Move to anonymous namespaces in rijndael-simd.cpp
parent
0ebdb07705
commit
26597059d9
|
|
@ -42,7 +42,7 @@ typedef uint64x2_p8 VectorType;
|
|||
|
||||
#if defined(CRYPTOPP_DOXYGEN_PROCESSING)
|
||||
//! \brief Default vector typedef
|
||||
//! \details IBM XL C/C++ provides equally good support for all vector types,
|
||||
//! \details IBM XL C/C++ provides equally good support for all vector types,
|
||||
//! including <tt>uint8x16_p8</tt>. GCC provides good support for
|
||||
//! <tt>uint64x2_p8</tt>. <tt>VectorType</tt> is typedef'd accordingly to
|
||||
//! minimize casting to and from buit-in function calls.
|
||||
|
|
@ -345,7 +345,7 @@ inline T1 VectorAdd(const T1& vec1, const T2& vec2)
|
|||
//! of bytes. Both vec1 and vec2 are cast to uint8x16_p8. The return
|
||||
//! vector is the same type as vec1.
|
||||
//! \details On big endian machines VectorShiftLeft() is <tt>vec_sld(a, b,
|
||||
//! c)</tt>. On little endian machines VectorShiftLeft() is translated to
|
||||
//! c)</tt>. On little endian machines VectorShiftLeft() is translated to
|
||||
//! <tt>vec_sld(b, a, 16-c)</tt>. You should always call the function as
|
||||
//! if on a big endian machine as shown below.
|
||||
//! <pre>
|
||||
|
|
|
|||
|
|
@ -159,6 +159,8 @@ bool CPU_ProbeAES()
|
|||
|
||||
#if (CRYPTOPP_ARM_AES_AVAILABLE)
|
||||
|
||||
ANONYMOUS_NAMESPACE_BEGIN
|
||||
|
||||
#if defined(IS_LITTLE_ENDIAN)
|
||||
const word32 s_one[] = {0, 0, 0, 1<<24}; // uint32x4_t
|
||||
#else
|
||||
|
|
@ -333,6 +335,8 @@ static inline void ARMV8_Dec_6_Blocks(uint8x16_t &block0, uint8x16_t &block1, ui
|
|||
block5 = veorq_u8(block5, key);
|
||||
}
|
||||
|
||||
ANONYMOUS_NAMESPACE_END
|
||||
|
||||
template <typename F1, typename F6>
|
||||
size_t Rijndael_AdvancedProcessBlocks_ARMV8(F1 func1, F6 func6, const word32 *subKeys, size_t rounds,
|
||||
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
|
||||
|
|
@ -471,6 +475,8 @@ size_t Rijndael_Dec_AdvancedProcessBlocks_ARMV8(const word32 *subKeys, size_t ro
|
|||
|
||||
#if (CRYPTOPP_AESNI_AVAILABLE)
|
||||
|
||||
ANONYMOUS_NAMESPACE_BEGIN
|
||||
|
||||
CRYPTOPP_ALIGN_DATA(16)
|
||||
const word32 s_one[] = {0, 0, 0, 1<<24};
|
||||
|
||||
|
|
@ -667,33 +673,11 @@ static inline size_t Rijndael_AdvancedProcessBlocks_AESNI(F1 func1, F4 func4,
|
|||
return length;
|
||||
}
|
||||
|
||||
size_t Rijndael_Enc_AdvancedProcessBlocks_AESNI(const word32 *subKeys, size_t rounds,
|
||||
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
|
||||
{
|
||||
// SunCC workaround
|
||||
MAYBE_CONST word32* sk = MAYBE_UNCONST_CAST(word32*, subKeys);
|
||||
MAYBE_CONST byte* ib = MAYBE_UNCONST_CAST(byte*, inBlocks);
|
||||
MAYBE_CONST byte* xb = MAYBE_UNCONST_CAST(byte*, xorBlocks);
|
||||
|
||||
return Rijndael_AdvancedProcessBlocks_AESNI(AESNI_Enc_Block, AESNI_Enc_4_Blocks,
|
||||
sk, rounds, ib, xb, outBlocks, length, flags);
|
||||
}
|
||||
|
||||
size_t Rijndael_Dec_AdvancedProcessBlocks_AESNI(const word32 *subKeys, size_t rounds,
|
||||
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
|
||||
{
|
||||
MAYBE_CONST word32* sk = MAYBE_UNCONST_CAST(word32*, subKeys);
|
||||
MAYBE_CONST byte* ib = MAYBE_UNCONST_CAST(byte*, inBlocks);
|
||||
MAYBE_CONST byte* xb = MAYBE_UNCONST_CAST(byte*, xorBlocks);
|
||||
|
||||
return Rijndael_AdvancedProcessBlocks_AESNI(AESNI_Dec_Block, AESNI_Dec_4_Blocks,
|
||||
sk, rounds, ib, xb, outBlocks, length, flags);
|
||||
}
|
||||
ANONYMOUS_NAMESPACE_END
|
||||
|
||||
void Rijndael_UncheckedSetKey_SSE4_AESNI(const byte *userKey, size_t keyLen, word32 *rk, unsigned int rounds)
|
||||
{
|
||||
const word32 *ro = s_rconLE, *rc = s_rconLE;
|
||||
CRYPTOPP_UNUSED(ro);
|
||||
const word32 *rc = s_rconLE;
|
||||
|
||||
__m128i temp = _mm_loadu_si128(M128_CAST(userKey+keyLen-16));
|
||||
std::memcpy(rk, userKey, keyLen);
|
||||
|
|
@ -704,7 +688,6 @@ void Rijndael_UncheckedSetKey_SSE4_AESNI(const byte *userKey, size_t keyLen, wor
|
|||
|
||||
while (true)
|
||||
{
|
||||
CRYPTOPP_ASSERT(rc < ro + COUNTOF(s_rconLE));
|
||||
rk[keyLen/4] = rk[0] ^ _mm_extract_epi32(_mm_aeskeygenassist_si128(temp, 0), 3) ^ *(rc++);
|
||||
rk[keyLen/4+1] = rk[1] ^ rk[keyLen/4];
|
||||
rk[keyLen/4+2] = rk[2] ^ rk[keyLen/4+1];
|
||||
|
|
@ -717,25 +700,19 @@ void Rijndael_UncheckedSetKey_SSE4_AESNI(const byte *userKey, size_t keyLen, wor
|
|||
{
|
||||
rk[10] = rk[ 4] ^ rk[ 9];
|
||||
rk[11] = rk[ 5] ^ rk[10];
|
||||
|
||||
CRYPTOPP_ASSERT(keySize >= 12);
|
||||
temp = _mm_insert_epi32(temp, rk[11], 3);
|
||||
}
|
||||
else if (keyLen == 32)
|
||||
{
|
||||
CRYPTOPP_ASSERT(keySize >= 12);
|
||||
temp = _mm_insert_epi32(temp, rk[11], 3);
|
||||
rk[12] = rk[ 4] ^ _mm_extract_epi32(_mm_aeskeygenassist_si128(temp, 0), 2);
|
||||
rk[13] = rk[ 5] ^ rk[12];
|
||||
rk[14] = rk[ 6] ^ rk[13];
|
||||
rk[15] = rk[ 7] ^ rk[14];
|
||||
|
||||
CRYPTOPP_ASSERT(keySize >= 16);
|
||||
temp = _mm_insert_epi32(temp, rk[15], 3);
|
||||
}
|
||||
else
|
||||
{
|
||||
CRYPTOPP_ASSERT(keySize >= 8);
|
||||
temp = _mm_insert_epi32(temp, rk[7], 3);
|
||||
}
|
||||
|
||||
|
|
@ -764,14 +741,39 @@ void Rijndael_UncheckedSetKeyRev_AESNI(word32 *key, unsigned int rounds)
|
|||
|
||||
*M128_CAST(key+i) = _mm_aesimc_si128(*M128_CAST(key+i));
|
||||
}
|
||||
|
||||
size_t Rijndael_Enc_AdvancedProcessBlocks_AESNI(const word32 *subKeys, size_t rounds,
|
||||
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
|
||||
{
|
||||
// SunCC workaround
|
||||
MAYBE_CONST word32* sk = MAYBE_UNCONST_CAST(word32*, subKeys);
|
||||
MAYBE_CONST byte* ib = MAYBE_UNCONST_CAST(byte*, inBlocks);
|
||||
MAYBE_CONST byte* xb = MAYBE_UNCONST_CAST(byte*, xorBlocks);
|
||||
|
||||
return Rijndael_AdvancedProcessBlocks_AESNI(AESNI_Enc_Block, AESNI_Enc_4_Blocks,
|
||||
sk, rounds, ib, xb, outBlocks, length, flags);
|
||||
}
|
||||
|
||||
size_t Rijndael_Dec_AdvancedProcessBlocks_AESNI(const word32 *subKeys, size_t rounds,
|
||||
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
|
||||
{
|
||||
MAYBE_CONST word32* sk = MAYBE_UNCONST_CAST(word32*, subKeys);
|
||||
MAYBE_CONST byte* ib = MAYBE_UNCONST_CAST(byte*, inBlocks);
|
||||
MAYBE_CONST byte* xb = MAYBE_UNCONST_CAST(byte*, xorBlocks);
|
||||
|
||||
return Rijndael_AdvancedProcessBlocks_AESNI(AESNI_Dec_Block, AESNI_Dec_4_Blocks,
|
||||
sk, rounds, ib, xb, outBlocks, length, flags);
|
||||
}
|
||||
|
||||
#endif // CRYPTOPP_AESNI_AVAILABLE
|
||||
|
||||
// ***************************** Power 8 ***************************** //
|
||||
|
||||
#if (CRYPTOPP_POWER8_AES_AVAILABLE)
|
||||
|
||||
ANONYMOUS_NAMESPACE_BEGIN
|
||||
|
||||
/* Round constants */
|
||||
CRYPTOPP_ALIGN_DATA(16)
|
||||
static const uint32_t s_rcon[3][4] = {
|
||||
#if defined(IS_LITTLE_ENDIAN)
|
||||
{0x01,0x01,0x01,0x01}, /* 1 */
|
||||
|
|
@ -785,7 +787,6 @@ static const uint32_t s_rcon[3][4] = {
|
|||
};
|
||||
|
||||
/* Permute mask */
|
||||
CRYPTOPP_ALIGN_DATA(16)
|
||||
static const uint32_t s_mask[4] = {
|
||||
#if defined(IS_LITTLE_ENDIAN)
|
||||
0x0c0f0e0d,0x0c0f0e0d,0x0c0f0e0d,0x0c0f0e0d
|
||||
|
|
@ -828,104 +829,6 @@ IncrementPointerAndStore(const uint8x16_p8& r, uint8_t* p)
|
|||
return p;
|
||||
}
|
||||
|
||||
// We still need rcon and Se to fallback to C/C++ for AES-192 and AES-256.
|
||||
// The IBM docs on AES sucks. Intel's docs on AESNI puts IBM to shame.
|
||||
void Rijndael_UncheckedSetKey_POWER8(const byte* userKey, size_t keyLen, word32* rk,
|
||||
const word32* rc, const byte* Se)
|
||||
{
|
||||
const size_t rounds = keyLen / 4 + 6;
|
||||
if (keyLen == 16)
|
||||
{
|
||||
std::memcpy(rk, userKey, keyLen);
|
||||
uint8_t* skptr = (uint8_t*)rk;
|
||||
|
||||
uint8x16_p8 r1 = (uint8x16_p8)VectorLoadKey(skptr);
|
||||
uint8x16_p8 r4 = (uint8x16_p8)VectorLoadKey(s_rcon[0]);
|
||||
uint8x16_p8 r5 = (uint8x16_p8)VectorLoadKey(s_mask);
|
||||
|
||||
#if defined(IS_LITTLE_ENDIAN)
|
||||
// Only the user key requires byte reversing.
|
||||
// The subkeys are stored in proper endianess.
|
||||
ReverseByteArrayLE(skptr);
|
||||
#endif
|
||||
|
||||
for (unsigned int i=0; i<rounds-2; ++i)
|
||||
{
|
||||
r1 = Rijndael_Subkey_POWER8(r1, r4, r5);
|
||||
r4 = vec_add(r4, r4);
|
||||
skptr = IncrementPointerAndStore(r1, skptr);
|
||||
}
|
||||
|
||||
/* Round 9 using rcon=0x1b */
|
||||
r4 = (uint8x16_p8)VectorLoadKey(s_rcon[1]);
|
||||
r1 = Rijndael_Subkey_POWER8(r1, r4, r5);
|
||||
skptr = IncrementPointerAndStore(r1, skptr);
|
||||
|
||||
/* Round 10 using rcon=0x36 */
|
||||
r4 = (uint8x16_p8)VectorLoadKey(s_rcon[2]);
|
||||
r1 = Rijndael_Subkey_POWER8(r1, r4, r5);
|
||||
skptr = IncrementPointerAndStore(r1, skptr);
|
||||
}
|
||||
else
|
||||
{
|
||||
GetUserKey(BIG_ENDIAN_ORDER, rk, keyLen/4, userKey, keyLen);
|
||||
word32 *rk_saved = rk, temp;
|
||||
|
||||
// keySize: m_key allocates 4*(rounds+1) word32's.
|
||||
const size_t keySize = 4*(rounds+1);
|
||||
const word32* end = rk + keySize;
|
||||
|
||||
while (true)
|
||||
{
|
||||
temp = rk[keyLen/4-1];
|
||||
word32 x = (word32(Se[GETBYTE(temp, 2)]) << 24) ^ (word32(Se[GETBYTE(temp, 1)]) << 16) ^
|
||||
(word32(Se[GETBYTE(temp, 0)]) << 8) ^ Se[GETBYTE(temp, 3)];
|
||||
rk[keyLen/4] = rk[0] ^ x ^ *(rc++);
|
||||
rk[keyLen/4+1] = rk[1] ^ rk[keyLen/4];
|
||||
rk[keyLen/4+2] = rk[2] ^ rk[keyLen/4+1];
|
||||
rk[keyLen/4+3] = rk[3] ^ rk[keyLen/4+2];
|
||||
|
||||
if (rk + keyLen/4 + 4 == end)
|
||||
break;
|
||||
|
||||
if (keyLen == 24)
|
||||
{
|
||||
rk[10] = rk[ 4] ^ rk[ 9];
|
||||
rk[11] = rk[ 5] ^ rk[10];
|
||||
}
|
||||
else if (keyLen == 32)
|
||||
{
|
||||
temp = rk[11];
|
||||
rk[12] = rk[ 4] ^ (word32(Se[GETBYTE(temp, 3)]) << 24) ^ (word32(Se[GETBYTE(temp, 2)]) << 16) ^ (word32(Se[GETBYTE(temp, 1)]) << 8) ^ Se[GETBYTE(temp, 0)];
|
||||
rk[13] = rk[ 5] ^ rk[12];
|
||||
rk[14] = rk[ 6] ^ rk[13];
|
||||
rk[15] = rk[ 7] ^ rk[14];
|
||||
}
|
||||
rk += keyLen/4;
|
||||
}
|
||||
|
||||
#if defined(IS_LITTLE_ENDIAN)
|
||||
rk = rk_saved;
|
||||
const uint8x16_p8 mask = ((uint8x16_p8){12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3});
|
||||
const uint8x16_p8 zero = {0};
|
||||
|
||||
unsigned int i=0;
|
||||
for (i=0; i<rounds; i+=2, rk+=8)
|
||||
{
|
||||
uint8x16_p8 d1 = vec_vsx_ld( 0, (uint8_t*)rk);
|
||||
uint8x16_p8 d2 = vec_vsx_ld(16, (uint8_t*)rk);
|
||||
d1 = vec_perm(d1, zero, mask);
|
||||
d2 = vec_perm(d2, zero, mask);
|
||||
vec_vsx_st(d1, 0, (uint8_t*)rk);
|
||||
vec_vsx_st(d2, 16, (uint8_t*)rk);
|
||||
}
|
||||
|
||||
for ( ; i<rounds+1; i++, rk+=4)
|
||||
vec_vsx_st(vec_perm(vec_vsx_ld(0, (uint8_t*)rk), zero, mask), 0, (uint8_t*)rk);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
static inline void POWER8_Enc_Block(VectorType &block, const word32 *subkeys, unsigned int rounds)
|
||||
{
|
||||
CRYPTOPP_ASSERT(IsAlignedOn(subkeys, 16));
|
||||
|
|
@ -1155,6 +1058,106 @@ size_t Rijndael_AdvancedProcessBlocks_POWER8(F1 func1, F6 func6, const word32 *s
|
|||
return length;
|
||||
}
|
||||
|
||||
ANONYMOUS_NAMESPACE_END
|
||||
|
||||
// We still need rcon and Se to fallback to C/C++ for AES-192 and AES-256.
|
||||
// The IBM docs on AES sucks. Intel's docs on AESNI puts IBM to shame.
|
||||
void Rijndael_UncheckedSetKey_POWER8(const byte* userKey, size_t keyLen, word32* rk,
|
||||
const word32* rc, const byte* Se)
|
||||
{
|
||||
const size_t rounds = keyLen / 4 + 6;
|
||||
if (keyLen == 16)
|
||||
{
|
||||
std::memcpy(rk, userKey, keyLen);
|
||||
uint8_t* skptr = (uint8_t*)rk;
|
||||
|
||||
uint8x16_p8 r1 = (uint8x16_p8)VectorLoadKey(skptr);
|
||||
uint8x16_p8 r4 = (uint8x16_p8)VectorLoadKey(s_rcon[0]);
|
||||
uint8x16_p8 r5 = (uint8x16_p8)VectorLoadKey(s_mask);
|
||||
|
||||
#if defined(IS_LITTLE_ENDIAN)
|
||||
// Only the user key requires byte reversing.
|
||||
// The subkeys are stored in proper endianess.
|
||||
ReverseByteArrayLE(skptr);
|
||||
#endif
|
||||
|
||||
for (unsigned int i=0; i<rounds-2; ++i)
|
||||
{
|
||||
r1 = Rijndael_Subkey_POWER8(r1, r4, r5);
|
||||
r4 = vec_add(r4, r4);
|
||||
skptr = IncrementPointerAndStore(r1, skptr);
|
||||
}
|
||||
|
||||
/* Round 9 using rcon=0x1b */
|
||||
r4 = (uint8x16_p8)VectorLoadKey(s_rcon[1]);
|
||||
r1 = Rijndael_Subkey_POWER8(r1, r4, r5);
|
||||
skptr = IncrementPointerAndStore(r1, skptr);
|
||||
|
||||
/* Round 10 using rcon=0x36 */
|
||||
r4 = (uint8x16_p8)VectorLoadKey(s_rcon[2]);
|
||||
r1 = Rijndael_Subkey_POWER8(r1, r4, r5);
|
||||
skptr = IncrementPointerAndStore(r1, skptr);
|
||||
}
|
||||
else
|
||||
{
|
||||
GetUserKey(BIG_ENDIAN_ORDER, rk, keyLen/4, userKey, keyLen);
|
||||
word32 *rk_saved = rk, temp;
|
||||
|
||||
// keySize: m_key allocates 4*(rounds+1) word32's.
|
||||
const size_t keySize = 4*(rounds+1);
|
||||
const word32* end = rk + keySize;
|
||||
|
||||
while (true)
|
||||
{
|
||||
temp = rk[keyLen/4-1];
|
||||
word32 x = (word32(Se[GETBYTE(temp, 2)]) << 24) ^ (word32(Se[GETBYTE(temp, 1)]) << 16) ^
|
||||
(word32(Se[GETBYTE(temp, 0)]) << 8) ^ Se[GETBYTE(temp, 3)];
|
||||
rk[keyLen/4] = rk[0] ^ x ^ *(rc++);
|
||||
rk[keyLen/4+1] = rk[1] ^ rk[keyLen/4];
|
||||
rk[keyLen/4+2] = rk[2] ^ rk[keyLen/4+1];
|
||||
rk[keyLen/4+3] = rk[3] ^ rk[keyLen/4+2];
|
||||
|
||||
if (rk + keyLen/4 + 4 == end)
|
||||
break;
|
||||
|
||||
if (keyLen == 24)
|
||||
{
|
||||
rk[10] = rk[ 4] ^ rk[ 9];
|
||||
rk[11] = rk[ 5] ^ rk[10];
|
||||
}
|
||||
else if (keyLen == 32)
|
||||
{
|
||||
temp = rk[11];
|
||||
rk[12] = rk[ 4] ^ (word32(Se[GETBYTE(temp, 3)]) << 24) ^ (word32(Se[GETBYTE(temp, 2)]) << 16) ^ (word32(Se[GETBYTE(temp, 1)]) << 8) ^ Se[GETBYTE(temp, 0)];
|
||||
rk[13] = rk[ 5] ^ rk[12];
|
||||
rk[14] = rk[ 6] ^ rk[13];
|
||||
rk[15] = rk[ 7] ^ rk[14];
|
||||
}
|
||||
rk += keyLen/4;
|
||||
}
|
||||
|
||||
#if defined(IS_LITTLE_ENDIAN)
|
||||
rk = rk_saved;
|
||||
const uint8x16_p8 mask = ((uint8x16_p8){12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3});
|
||||
const uint8x16_p8 zero = {0};
|
||||
|
||||
unsigned int i=0;
|
||||
for (i=0; i<rounds; i+=2, rk+=8)
|
||||
{
|
||||
uint8x16_p8 d1 = vec_vsx_ld( 0, (uint8_t*)rk);
|
||||
uint8x16_p8 d2 = vec_vsx_ld(16, (uint8_t*)rk);
|
||||
d1 = vec_perm(d1, zero, mask);
|
||||
d2 = vec_perm(d2, zero, mask);
|
||||
vec_vsx_st(d1, 0, (uint8_t*)rk);
|
||||
vec_vsx_st(d2, 16, (uint8_t*)rk);
|
||||
}
|
||||
|
||||
for ( ; i<rounds+1; i++, rk+=4)
|
||||
vec_vsx_st(vec_perm(vec_vsx_ld(0, (uint8_t*)rk), zero, mask), 0, (uint8_t*)rk);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
size_t Rijndael_Enc_AdvancedProcessBlocks_POWER8(const word32 *subKeys, size_t rounds,
|
||||
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
|
||||
{
|
||||
|
|
|
|||
Loading…
Reference in New Issue