diff --git a/ppc-crypto.h b/ppc-crypto.h index 9545a806..d5fc7987 100644 --- a/ppc-crypto.h +++ b/ppc-crypto.h @@ -42,7 +42,7 @@ typedef uint64x2_p8 VectorType; #if defined(CRYPTOPP_DOXYGEN_PROCESSING) //! \brief Default vector typedef -//! \details IBM XL C/C++ provides equally good support for all vector types, +//! \details IBM XL C/C++ provides equally good support for all vector types, //! including uint8x16_p8. GCC provides good support for //! uint64x2_p8. VectorType is typedef'd accordingly to //! minimize casting to and from buit-in function calls. @@ -345,7 +345,7 @@ inline T1 VectorAdd(const T1& vec1, const T2& vec2) //! of bytes. Both vec1 and vec2 are cast to uint8x16_p8. The return //! vector is the same type as vec1. //! \details On big endian machines VectorShiftLeft() is vec_sld(a, b, -//! c). On little endian machines VectorShiftLeft() is translated to +//! c). On little endian machines VectorShiftLeft() is translated to //! vec_sld(b, a, 16-c). You should always call the function as //! if on a big endian machine as shown below. //!
diff --git a/rijndael-simd.cpp b/rijndael-simd.cpp
index 3a1f7647..beda89e0 100644
--- a/rijndael-simd.cpp
+++ b/rijndael-simd.cpp
@@ -159,6 +159,8 @@ bool CPU_ProbeAES()
#if (CRYPTOPP_ARM_AES_AVAILABLE)
+ANONYMOUS_NAMESPACE_BEGIN
+
#if defined(IS_LITTLE_ENDIAN)
const word32 s_one[] = {0, 0, 0, 1<<24}; // uint32x4_t
#else
@@ -333,6 +335,8 @@ static inline void ARMV8_Dec_6_Blocks(uint8x16_t &block0, uint8x16_t &block1, ui
block5 = veorq_u8(block5, key);
}
+ANONYMOUS_NAMESPACE_END
+
template
size_t Rijndael_AdvancedProcessBlocks_ARMV8(F1 func1, F6 func6, const word32 *subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
@@ -471,6 +475,8 @@ size_t Rijndael_Dec_AdvancedProcessBlocks_ARMV8(const word32 *subKeys, size_t ro
#if (CRYPTOPP_AESNI_AVAILABLE)
+ANONYMOUS_NAMESPACE_BEGIN
+
CRYPTOPP_ALIGN_DATA(16)
const word32 s_one[] = {0, 0, 0, 1<<24};
@@ -667,33 +673,11 @@ static inline size_t Rijndael_AdvancedProcessBlocks_AESNI(F1 func1, F4 func4,
return length;
}
-size_t Rijndael_Enc_AdvancedProcessBlocks_AESNI(const word32 *subKeys, size_t rounds,
- const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
-{
- // SunCC workaround
- MAYBE_CONST word32* sk = MAYBE_UNCONST_CAST(word32*, subKeys);
- MAYBE_CONST byte* ib = MAYBE_UNCONST_CAST(byte*, inBlocks);
- MAYBE_CONST byte* xb = MAYBE_UNCONST_CAST(byte*, xorBlocks);
-
- return Rijndael_AdvancedProcessBlocks_AESNI(AESNI_Enc_Block, AESNI_Enc_4_Blocks,
- sk, rounds, ib, xb, outBlocks, length, flags);
-}
-
-size_t Rijndael_Dec_AdvancedProcessBlocks_AESNI(const word32 *subKeys, size_t rounds,
- const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
-{
- MAYBE_CONST word32* sk = MAYBE_UNCONST_CAST(word32*, subKeys);
- MAYBE_CONST byte* ib = MAYBE_UNCONST_CAST(byte*, inBlocks);
- MAYBE_CONST byte* xb = MAYBE_UNCONST_CAST(byte*, xorBlocks);
-
- return Rijndael_AdvancedProcessBlocks_AESNI(AESNI_Dec_Block, AESNI_Dec_4_Blocks,
- sk, rounds, ib, xb, outBlocks, length, flags);
-}
+ANONYMOUS_NAMESPACE_END
void Rijndael_UncheckedSetKey_SSE4_AESNI(const byte *userKey, size_t keyLen, word32 *rk, unsigned int rounds)
{
- const word32 *ro = s_rconLE, *rc = s_rconLE;
- CRYPTOPP_UNUSED(ro);
+ const word32 *rc = s_rconLE;
__m128i temp = _mm_loadu_si128(M128_CAST(userKey+keyLen-16));
std::memcpy(rk, userKey, keyLen);
@@ -704,7 +688,6 @@ void Rijndael_UncheckedSetKey_SSE4_AESNI(const byte *userKey, size_t keyLen, wor
while (true)
{
- CRYPTOPP_ASSERT(rc < ro + COUNTOF(s_rconLE));
rk[keyLen/4] = rk[0] ^ _mm_extract_epi32(_mm_aeskeygenassist_si128(temp, 0), 3) ^ *(rc++);
rk[keyLen/4+1] = rk[1] ^ rk[keyLen/4];
rk[keyLen/4+2] = rk[2] ^ rk[keyLen/4+1];
@@ -717,25 +700,19 @@ void Rijndael_UncheckedSetKey_SSE4_AESNI(const byte *userKey, size_t keyLen, wor
{
rk[10] = rk[ 4] ^ rk[ 9];
rk[11] = rk[ 5] ^ rk[10];
-
- CRYPTOPP_ASSERT(keySize >= 12);
temp = _mm_insert_epi32(temp, rk[11], 3);
}
else if (keyLen == 32)
{
- CRYPTOPP_ASSERT(keySize >= 12);
temp = _mm_insert_epi32(temp, rk[11], 3);
rk[12] = rk[ 4] ^ _mm_extract_epi32(_mm_aeskeygenassist_si128(temp, 0), 2);
rk[13] = rk[ 5] ^ rk[12];
rk[14] = rk[ 6] ^ rk[13];
rk[15] = rk[ 7] ^ rk[14];
-
- CRYPTOPP_ASSERT(keySize >= 16);
temp = _mm_insert_epi32(temp, rk[15], 3);
}
else
{
- CRYPTOPP_ASSERT(keySize >= 8);
temp = _mm_insert_epi32(temp, rk[7], 3);
}
@@ -764,14 +741,39 @@ void Rijndael_UncheckedSetKeyRev_AESNI(word32 *key, unsigned int rounds)
*M128_CAST(key+i) = _mm_aesimc_si128(*M128_CAST(key+i));
}
+
+size_t Rijndael_Enc_AdvancedProcessBlocks_AESNI(const word32 *subKeys, size_t rounds,
+ const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
+{
+ // SunCC workaround
+ MAYBE_CONST word32* sk = MAYBE_UNCONST_CAST(word32*, subKeys);
+ MAYBE_CONST byte* ib = MAYBE_UNCONST_CAST(byte*, inBlocks);
+ MAYBE_CONST byte* xb = MAYBE_UNCONST_CAST(byte*, xorBlocks);
+
+ return Rijndael_AdvancedProcessBlocks_AESNI(AESNI_Enc_Block, AESNI_Enc_4_Blocks,
+ sk, rounds, ib, xb, outBlocks, length, flags);
+}
+
+size_t Rijndael_Dec_AdvancedProcessBlocks_AESNI(const word32 *subKeys, size_t rounds,
+ const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
+{
+ MAYBE_CONST word32* sk = MAYBE_UNCONST_CAST(word32*, subKeys);
+ MAYBE_CONST byte* ib = MAYBE_UNCONST_CAST(byte*, inBlocks);
+ MAYBE_CONST byte* xb = MAYBE_UNCONST_CAST(byte*, xorBlocks);
+
+ return Rijndael_AdvancedProcessBlocks_AESNI(AESNI_Dec_Block, AESNI_Dec_4_Blocks,
+ sk, rounds, ib, xb, outBlocks, length, flags);
+}
+
#endif // CRYPTOPP_AESNI_AVAILABLE
// ***************************** Power 8 ***************************** //
#if (CRYPTOPP_POWER8_AES_AVAILABLE)
+ANONYMOUS_NAMESPACE_BEGIN
+
/* Round constants */
-CRYPTOPP_ALIGN_DATA(16)
static const uint32_t s_rcon[3][4] = {
#if defined(IS_LITTLE_ENDIAN)
{0x01,0x01,0x01,0x01}, /* 1 */
@@ -785,7 +787,6 @@ static const uint32_t s_rcon[3][4] = {
};
/* Permute mask */
-CRYPTOPP_ALIGN_DATA(16)
static const uint32_t s_mask[4] = {
#if defined(IS_LITTLE_ENDIAN)
0x0c0f0e0d,0x0c0f0e0d,0x0c0f0e0d,0x0c0f0e0d
@@ -828,104 +829,6 @@ IncrementPointerAndStore(const uint8x16_p8& r, uint8_t* p)
return p;
}
-// We still need rcon and Se to fallback to C/C++ for AES-192 and AES-256.
-// The IBM docs on AES sucks. Intel's docs on AESNI puts IBM to shame.
-void Rijndael_UncheckedSetKey_POWER8(const byte* userKey, size_t keyLen, word32* rk,
- const word32* rc, const byte* Se)
-{
- const size_t rounds = keyLen / 4 + 6;
- if (keyLen == 16)
- {
- std::memcpy(rk, userKey, keyLen);
- uint8_t* skptr = (uint8_t*)rk;
-
- uint8x16_p8 r1 = (uint8x16_p8)VectorLoadKey(skptr);
- uint8x16_p8 r4 = (uint8x16_p8)VectorLoadKey(s_rcon[0]);
- uint8x16_p8 r5 = (uint8x16_p8)VectorLoadKey(s_mask);
-
-#if defined(IS_LITTLE_ENDIAN)
- // Only the user key requires byte reversing.
- // The subkeys are stored in proper endianess.
- ReverseByteArrayLE(skptr);
-#endif
-
- for (unsigned int i=0; i