Move free standing function into anonymous namespace

Update comments and use class constants when available
pull/461/head
Jeffrey Walton 2017-08-14 00:08:55 -04:00
parent 2aff92ddb6
commit 2ee8e3b26d
No known key found for this signature in database
GPG Key ID: B36AB348921B1838
2 changed files with 232 additions and 167 deletions

396
sha.cpp
View File

@ -8,13 +8,21 @@
// In August 2017 Walton reworked the internals to align all the implementations. // In August 2017 Walton reworked the internals to align all the implementations.
// Formerly all hashes were software based, IterHashBase handled endian conversions, // Formerly all hashes were software based, IterHashBase handled endian conversions,
// IterHashBase repeatedly called the single block SHA{N}::Transform. The rework // and IterHashBase dispatched a single to block SHA{N}::Transform. SHA{N}::Transform
// added SHA{N}::HashMultipleBlocks, and the SHA classes attempt to always use it. // then performed the single block hashing. It was repeated for multiple blocks.
// Now SHA{N}::Transform calls into SHA{N}::HashMultipleBlocks. An added wrinkle is //
// hardware is little endian and software is big endian, so HashMultipleBlocks // The rework added SHA{N}::HashMultipleBlocks (class) and SHA{N}_HashMultipleBlocks
// accepts a ByteOrder for the incoming data. Hardware based SHA{N}::HashMultipleBlocks // (free standing). There are also hardware accelerated variations. Callers enter
// can often perform the endian swap much easier by setting an EPI mask. The rework // SHA{N}::HashMultipleBlocks (class), and the function calls SHA{N}_HashMultipleBlocks
// also removed the hacked-in pointers to implementations. // (free standing) or SHA{N}_HashBlock (free standing) as a fallback.
//
// An added wrinkle is hardware is little endian, C++ is big endian, and callers use big endian,
// so SHA{N}_HashMultipleBlock accepts a ByteOrder for the incoming data arrangement. Hardware
// based SHA{N}_HashMultipleBlock can often perform the endian swap much easier by setting
// an EPI mask. Endian swap incurs no penalty on Intel SHA, and 4-instruction penaly on ARM SHA.
// Under C++ the full software based swap penalty is incurred due to use of ReverseBytes().
//
// The rework also removed the hacked-in pointers to implementations.
// use "cl /EP /P /DCRYPTOPP_GENERATE_X64_MASM sha.cpp" to generate MASM code // use "cl /EP /P /DCRYPTOPP_GENERATE_X64_MASM sha.cpp" to generate MASM code
@ -44,12 +52,17 @@
#define M128_CAST(x) ((__m128i *)(void *)(x)) #define M128_CAST(x) ((__m128i *)(void *)(x))
#define CONST_M128_CAST(x) ((const __m128i *)(const void *)(x)) #define CONST_M128_CAST(x) ((const __m128i *)(const void *)(x))
// C++ makes const internal linkage
#define EXPORT_TABLE extern
NAMESPACE_BEGIN(CryptoPP) NAMESPACE_BEGIN(CryptoPP)
//////////////////////////////// ////////////////////////////////
// start of Steve Reid's code // // start of Steve Reid's code //
//////////////////////////////// ////////////////////////////////
ANONYMOUS_NAMESPACE_BEGIN
#define blk0(i) (W[i] = data[i]) #define blk0(i) (W[i] = data[i])
#define blk1(i) (W[i&15] = rotlFixed(W[(i+13)&15]^W[(i+8)&15]^W[(i+2)&15]^W[i&15],1)) #define blk1(i) (W[i&15] = rotlFixed(W[(i+13)&15]^W[(i+8)&15]^W[(i+2)&15]^W[i&15],1))
@ -65,7 +78,7 @@ NAMESPACE_BEGIN(CryptoPP)
#define R3(v,w,x,y,z,i) z+=f3(w,x,y)+blk1(i)+0x8F1BBCDC+rotlFixed(v,5);w=rotlFixed(w,30); #define R3(v,w,x,y,z,i) z+=f3(w,x,y)+blk1(i)+0x8F1BBCDC+rotlFixed(v,5);w=rotlFixed(w,30);
#define R4(v,w,x,y,z,i) z+=f4(w,x,y)+blk1(i)+0xCA62C1D6+rotlFixed(v,5);w=rotlFixed(w,30); #define R4(v,w,x,y,z,i) z+=f4(w,x,y)+blk1(i)+0xCA62C1D6+rotlFixed(v,5);w=rotlFixed(w,30);
static void SHA1_CXX_HashBlock(word32 *state, const word32 *data) void SHA1_CXX_HashBlock(word32 *state, const word32 *data)
{ {
CRYPTOPP_ASSERT(state); CRYPTOPP_ASSERT(state);
CRYPTOPP_ASSERT(data); CRYPTOPP_ASSERT(data);
@ -106,6 +119,8 @@ static void SHA1_CXX_HashBlock(word32 *state, const word32 *data)
state[4] += e; state[4] += e;
} }
ANONYMOUS_NAMESPACE_END
////////////////////////////// //////////////////////////////
// end of Steve Reid's code // // end of Steve Reid's code //
////////////////////////////// //////////////////////////////
@ -115,12 +130,15 @@ static void SHA1_CXX_HashBlock(word32 *state, const word32 *data)
/////////////////////////////////// ///////////////////////////////////
#if CRYPTOPP_BOOL_SSE_SHA_INTRINSICS_AVAILABLE #if CRYPTOPP_BOOL_SSE_SHA_INTRINSICS_AVAILABLE
ANONYMOUS_NAMESPACE_BEGIN
// Based on http://software.intel.com/en-us/articles/intel-sha-extensions and code by Sean Gulley. // Based on http://software.intel.com/en-us/articles/intel-sha-extensions and code by Sean Gulley.
static void SHA1_SHANI_HashMultipleBlocks(word32 *state, const word32 *data, size_t length, ByteOrder order) void SHA1_SHANI_HashMultipleBlocks(word32 *state, const word32 *data, size_t length, ByteOrder order)
{ {
CRYPTOPP_ASSERT(state); CRYPTOPP_ASSERT(state);
CRYPTOPP_ASSERT(data); CRYPTOPP_ASSERT(data);
CRYPTOPP_ASSERT(length >= 64); CRYPTOPP_ASSERT(length >= SHA1::BLOCKSIZE);
__m128i ABCD, ABCD_SAVE, E0, E0_SAVE, E1; __m128i ABCD, ABCD_SAVE, E0, E0_SAVE, E1;
__m128i MASK, MSG0, MSG1, MSG2, MSG3; __m128i MASK, MSG0, MSG1, MSG2, MSG3;
@ -137,7 +155,7 @@ static void SHA1_SHANI_HashMultipleBlocks(word32 *state, const word32 *data, siz
_mm_set_epi8(0,1,2,3, 4,5,6,7, 8,9,10,11, 12,13,14,15) : _mm_set_epi8(0,1,2,3, 4,5,6,7, 8,9,10,11, 12,13,14,15) :
_mm_set_epi8(3,2,1,0, 7,6,5,4, 11,10,9,8, 15,14,13,12) ; _mm_set_epi8(3,2,1,0, 7,6,5,4, 11,10,9,8, 15,14,13,12) ;
while (length >= 64) while (length >= SHA1::BLOCKSIZE)
{ {
// Save current hash // Save current hash
ABCD_SAVE = ABCD; ABCD_SAVE = ABCD;
@ -303,8 +321,8 @@ static void SHA1_SHANI_HashMultipleBlocks(word32 *state, const word32 *data, siz
E0 = _mm_sha1nexte_epu32(E0, E0_SAVE); E0 = _mm_sha1nexte_epu32(E0, E0_SAVE);
ABCD = _mm_add_epi32(ABCD, ABCD_SAVE); ABCD = _mm_add_epi32(ABCD, ABCD_SAVE);
data += 16; data += SHA1::BLOCKSIZE/sizeof(word32);
length -= 64; length -= SHA1::BLOCKSIZE;
} }
// Save state // Save state
@ -312,7 +330,10 @@ static void SHA1_SHANI_HashMultipleBlocks(word32 *state, const word32 *data, siz
_mm_storeu_si128(M128_CAST(state), ABCD); _mm_storeu_si128(M128_CAST(state), ABCD);
state[4] = _mm_extract_epi32(E0, 3); state[4] = _mm_extract_epi32(E0, 3);
} }
#endif
ANONYMOUS_NAMESPACE_END
#endif // CRYPTOPP_BOOL_SSE_SHA_INTRINSICS_AVAILABLE
///////////////////////////////// /////////////////////////////////
// end of Walton/Gulley's code // // end of Walton/Gulley's code //
@ -323,11 +344,14 @@ static void SHA1_SHANI_HashMultipleBlocks(word32 *state, const word32 *data, siz
////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////
#if CRYPTOPP_BOOL_ARM_CRYPTO_INTRINSICS_AVAILABLE #if CRYPTOPP_BOOL_ARM_CRYPTO_INTRINSICS_AVAILABLE
static void SHA1_ARM_SHA_HashMultipleBlocks(word32 *state, const word32 *data, size_t length, ByteOrder order)
ANONYMOUS_NAMESPACE_BEGIN
void SHA1_ARM_SHA_HashMultipleBlocks(word32 *state, const word32 *data, size_t length, ByteOrder order)
{ {
CRYPTOPP_ASSERT(state); CRYPTOPP_ASSERT(state);
CRYPTOPP_ASSERT(data); CRYPTOPP_ASSERT(data);
CRYPTOPP_ASSERT(length >= 64); CRYPTOPP_ASSERT(length >= SHA1::BLOCKSIZE);
uint32x4_t C0, C1, C2, C3; uint32x4_t C0, C1, C2, C3;
uint32x4_t ABCD, ABCD_SAVED; uint32x4_t ABCD, ABCD_SAVED;
@ -344,7 +368,7 @@ static void SHA1_ARM_SHA_HashMultipleBlocks(word32 *state, const word32 *data, s
ABCD = vld1q_u32(&state[0]); ABCD = vld1q_u32(&state[0]);
E0 = state[4]; E0 = state[4];
while (length >= 64) while (length >= SHA1::BLOCKSIZE)
{ {
// Save current hash // Save current hash
ABCD_SAVED = ABCD; ABCD_SAVED = ABCD;
@ -501,14 +525,17 @@ static void SHA1_ARM_SHA_HashMultipleBlocks(word32 *state, const word32 *data, s
E0 += E0_SAVED; E0 += E0_SAVED;
ABCD = vaddq_u32(ABCD_SAVED, ABCD); ABCD = vaddq_u32(ABCD_SAVED, ABCD);
data += 16; data += SHA1::BLOCKSIZE/sizeof(word32);
length -= 64; length -= SHA1::BLOCKSIZE;
} }
// Save state // Save state
vst1q_u32(&state[0], ABCD); vst1q_u32(&state[0], ABCD);
state[4] = E0; state[4] = E0;
} }
ANONYMOUS_NAMESPACE_END
#endif // CRYPTOPP_BOOL_ARM_CRYPTO_INTRINSICS_AVAILABLE #endif // CRYPTOPP_BOOL_ARM_CRYPTO_INTRINSICS_AVAILABLE
/////////////////////////////////////////////////////// ///////////////////////////////////////////////////////
@ -550,7 +577,7 @@ void SHA1::Transform(word32 *state, const word32 *data)
size_t SHA1::HashMultipleBlocks(const word32 *input, size_t length) size_t SHA1::HashMultipleBlocks(const word32 *input, size_t length)
{ {
CRYPTOPP_ASSERT(input); CRYPTOPP_ASSERT(input);
CRYPTOPP_ASSERT(length >= 64); CRYPTOPP_ASSERT(length >= SHA1::BLOCKSIZE);
#if CRYPTOPP_BOOL_SSE_SHA_INTRINSICS_AVAILABLE #if CRYPTOPP_BOOL_SSE_SHA_INTRINSICS_AVAILABLE
if (HasSHA()) if (HasSHA())
@ -573,27 +600,25 @@ size_t SHA1::HashMultipleBlocks(const word32 *input, size_t length)
{ {
if (noReverse) if (noReverse)
{ {
// this->HashEndianCorrectedBlock(input);
SHA1_CXX_HashBlock(m_state, input); SHA1_CXX_HashBlock(m_state, input);
} }
else else
{ {
ByteReverse(dataBuf, input, 64); ByteReverse(dataBuf, input, SHA1::BLOCKSIZE);
// this->HashEndianCorrectedBlock(dataBuf);
SHA1_CXX_HashBlock(m_state, dataBuf); SHA1_CXX_HashBlock(m_state, dataBuf);
} }
input += 16; input += SHA1::BLOCKSIZE/sizeof(word32);
length -= 64; length -= SHA1::BLOCKSIZE;
} }
while (length >= 64); while (length >= SHA1::BLOCKSIZE);
return length; return length;
} }
// ************************************************************* // *************************************************************
CRYPTOPP_ALIGN_DATA(16) CRYPTOPP_ALIGN_DATA(16) EXPORT_TABLE
extern const word32 SHA256_K[64] CRYPTOPP_SECTION_ALIGN16 = { const word32 SHA256_K[64] CRYPTOPP_SECTION_ALIGN16 = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
@ -613,6 +638,8 @@ extern const word32 SHA256_K[64] CRYPTOPP_SECTION_ALIGN16 = {
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
}; };
ANONYMOUS_NAMESPACE_BEGIN
#define blk2(i) (W[i&15]+=s1(W[(i-2)&15])+W[(i-7)&15]+s0(W[(i-15)&15])) #define blk2(i) (W[i&15]+=s1(W[(i-2)&15])+W[(i-7)&15]+s0(W[(i-15)&15]))
#define Ch(x,y,z) (z^(x&(y^z))) #define Ch(x,y,z) (z^(x&(y^z)))
@ -636,7 +663,7 @@ extern const word32 SHA256_K[64] CRYPTOPP_SECTION_ALIGN16 = {
#define s0(x) (rotrFixed(x,7)^rotrFixed(x,18)^(x>>3)) #define s0(x) (rotrFixed(x,7)^rotrFixed(x,18)^(x>>3))
#define s1(x) (rotrFixed(x,17)^rotrFixed(x,19)^(x>>10)) #define s1(x) (rotrFixed(x,17)^rotrFixed(x,19)^(x>>10))
static void SHA256_CXX_HashBlock(word32 *state, const word32 *data) void SHA256_CXX_HashBlock(word32 *state, const word32 *data)
{ {
word32 W[16], T[8]; word32 W[16], T[8];
/* Copy context->state[] to working vars */ /* Copy context->state[] to working vars */
@ -666,6 +693,8 @@ static void SHA256_CXX_HashBlock(word32 *state, const word32 *data)
#undef s1 #undef s1
#undef R #undef R
ANONYMOUS_NAMESPACE_END
void SHA224::InitState(HashWordType *state) void SHA224::InitState(HashWordType *state)
{ {
static const word32 s[8] = {0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939, 0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4}; static const word32 s[8] = {0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939, 0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4};
@ -677,11 +706,13 @@ void SHA256::InitState(HashWordType *state)
static const word32 s[8] = {0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19}; static const word32 s[8] = {0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19};
memcpy(state, s, sizeof(s)); memcpy(state, s, sizeof(s));
} }
#endif // #ifndef CRYPTOPP_GENERATE_X64_MASM #endif // Not CRYPTOPP_GENERATE_X64_MASM
#if (defined(CRYPTOPP_X86_ASM_AVAILABLE) || defined(CRYPTOPP_X32_ASM_AVAILABLE) || defined(CRYPTOPP_GENERATE_X64_MASM)) #if (defined(CRYPTOPP_X86_ASM_AVAILABLE) || defined(CRYPTOPP_X32_ASM_AVAILABLE) || defined(CRYPTOPP_GENERATE_X64_MASM))
static void CRYPTOPP_FASTCALL SHA256_SSE_HashMultipleBlocks(word32 *state, const word32 *data, size_t len) ANONYMOUS_NAMESPACE_BEGIN
void CRYPTOPP_FASTCALL SHA256_SSE_HashMultipleBlocks(word32 *state, const word32 *data, size_t len)
{ {
#define LOCALS_SIZE 8*4 + 16*4 + 4*WORD_SZ #define LOCALS_SIZE 8*4 + 16*4 + 4*WORD_SZ
#define H(i) [BASE+ASM_MOD(1024+7-(i),8)*4] #define H(i) [BASE+ASM_MOD(1024+7-(i),8)*4]
@ -1000,127 +1031,32 @@ INTEL_NOPREFIX
#endif #endif
} }
#endif // (defined(CRYPTOPP_X86_ASM_AVAILABLE) || defined(CRYPTOPP_GENERATE_X64_MASM)) ANONYMOUS_NAMESPACE_END
#endif // CRYPTOPP_X86_ASM_AVAILABLE or CRYPTOPP_GENERATE_X64_MASM
#ifndef CRYPTOPP_GENERATE_X64_MASM #ifndef CRYPTOPP_GENERATE_X64_MASM
#ifdef CRYPTOPP_X64_MASM_AVAILABLE #ifdef CRYPTOPP_X64_MASM_AVAILABLE
extern "C" { EXPORT_TABLE "C" {
void CRYPTOPP_FASTCALL SHA256_SSE_HashMultipleBlocks(word32 *state, const word32 *data, size_t len); void CRYPTOPP_FASTCALL SHA256_SSE_HashMultipleBlocks(word32 *state, const word32 *data, size_t len);
} }
#endif #endif
#if CRYPTOPP_BOOL_SSE_SHA_INTRINSICS_AVAILABLE
static void SHA256_SHANI_HashMultipleBlocks(word32 *state, const word32 *data, size_t length, ByteOrder order);
#elif CRYPTOPP_BOOL_ARM_CRYPTO_INTRINSICS_AVAILABLE
static void SHA256_ARM_SHA_HashMultipleBlocks(word32 *state, const word32 *data, size_t length, ByteOrder order);
#endif
size_t SHA256::HashMultipleBlocks(const word32 *input, size_t length)
{
CRYPTOPP_ASSERT(input);
CRYPTOPP_ASSERT(length >= 64);
#if CRYPTOPP_BOOL_SSE_SHA_INTRINSICS_AVAILABLE
if (HasSHA())
{
SHA256_SHANI_HashMultipleBlocks(m_state, input, length, BIG_ENDIAN_ORDER);
return length & (SHA256::BLOCKSIZE - 1);
}
#endif
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
if (HasSSE2())
{
const size_t res = length & (SHA256::BLOCKSIZE - 1);
SHA256_SSE_HashMultipleBlocks(m_state, input, length-res);
return res;
}
#endif
#if CRYPTOPP_BOOL_ARM_CRYPTO_INTRINSICS_AVAILABLE
if (HasSHA2())
{
SHA256_ARM_SHA_HashMultipleBlocks(m_state, input, length, BIG_ENDIAN_ORDER);
return length & (SHA256::BLOCKSIZE - 1);
}
#endif
const bool noReverse = NativeByteOrderIs(this->GetByteOrder());
word32 *dataBuf = this->DataBuf();
do
{
if (noReverse)
{
// this->HashEndianCorrectedBlock(input);
SHA256_CXX_HashBlock(m_state, input);
}
else
{
ByteReverse(dataBuf, input, SHA256::BLOCKSIZE);
// this->HashEndianCorrectedBlock(dataBuf);
SHA256_CXX_HashBlock(m_state, dataBuf);
}
input += SHA256::BLOCKSIZE/sizeof(word32);
length -= SHA256::BLOCKSIZE;
}
while (length >= SHA256::BLOCKSIZE);
return length;
}
size_t SHA224::HashMultipleBlocks(const word32 *input, size_t length)
{
CRYPTOPP_ASSERT(input);
CRYPTOPP_ASSERT(length >= 64);
#if CRYPTOPP_BOOL_SSE_SHA_INTRINSICS_AVAILABLE
if (HasSHA())
{
SHA256_SHANI_HashMultipleBlocks(m_state, input, length, BIG_ENDIAN_ORDER);
return length & (SHA256::BLOCKSIZE - 1);
}
#endif
#if CRYPTOPP_BOOL_ARM_CRYPTO_INTRINSICS_AVAILABLE
if (HasSHA2())
{
SHA256_ARM_SHA_HashMultipleBlocks(m_state, input, length, BIG_ENDIAN_ORDER);
return length & (SHA256::BLOCKSIZE - 1);
}
#endif
const bool noReverse = NativeByteOrderIs(this->GetByteOrder());
word32 *dataBuf = this->DataBuf();
do
{
if (noReverse)
{
// this->HashEndianCorrectedBlock(input);
SHA256_CXX_HashBlock(m_state, input);
}
else
{
ByteReverse(dataBuf, input, SHA256::BLOCKSIZE);
// this->HashEndianCorrectedBlock(dataBuf);
SHA256_CXX_HashBlock(m_state, dataBuf);
}
input += SHA256::BLOCKSIZE/sizeof(word32);
length -= SHA256::BLOCKSIZE;
}
while (length >= SHA256::BLOCKSIZE);
return length;
}
/////////////////////////////////// ///////////////////////////////////
// start of Walton/Gulley's code // // start of Walton/Gulley's code //
/////////////////////////////////// ///////////////////////////////////
#if CRYPTOPP_BOOL_SSE_SHA_INTRINSICS_AVAILABLE #if CRYPTOPP_BOOL_SSE_SHA_INTRINSICS_AVAILABLE
ANONYMOUS_NAMESPACE_BEGIN
// Based on http://software.intel.com/en-us/articles/intel-sha-extensions and code by Sean Gulley. // Based on http://software.intel.com/en-us/articles/intel-sha-extensions and code by Sean Gulley.
static void SHA256_SHANI_HashMultipleBlocks(word32 *state, const word32 *data, size_t length, ByteOrder order) void SHA256_SHANI_HashMultipleBlocks(word32 *state, const word32 *data, size_t length, ByteOrder order)
{ {
CRYPTOPP_ASSERT(state); CRYPTOPP_ASSERT(state);
CRYPTOPP_ASSERT(data); CRYPTOPP_ASSERT(data);
CRYPTOPP_ASSERT(length >= 64); CRYPTOPP_ASSERT(length >= SHA256::BLOCKSIZE);
__m128i STATE0, STATE1; __m128i STATE0, STATE1;
__m128i MSG, TMP, MASK; __m128i MSG, TMP, MASK;
@ -1138,9 +1074,9 @@ static void SHA256_SHANI_HashMultipleBlocks(word32 *state, const word32 *data, s
_mm_set_epi8(12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3) : _mm_set_epi8(12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3) :
_mm_set_epi8(15,14,13,12, 11,10,9,8, 7,6,5,4, 3,2,1,0) ; _mm_set_epi8(15,14,13,12, 11,10,9,8, 7,6,5,4, 3,2,1,0) ;
TMP = _mm_shuffle_epi32(TMP, 0xB1); // CDAB TMP = _mm_shuffle_epi32(TMP, 0xB1); // CDAB
STATE1 = _mm_shuffle_epi32(STATE1, 0x1B); // EFGH STATE1 = _mm_shuffle_epi32(STATE1, 0x1B); // EFGH
STATE0 = _mm_alignr_epi8(TMP, STATE1, 8); // ABEF STATE0 = _mm_alignr_epi8(TMP, STATE1, 8); // ABEF
STATE1 = _mm_blend_epi16(STATE1, TMP, 0xF0); // CDGH STATE1 = _mm_blend_epi16(STATE1, TMP, 0xF0); // CDGH
while (length >= SHA256::BLOCKSIZE) while (length >= SHA256::BLOCKSIZE)
@ -1309,15 +1245,18 @@ static void SHA256_SHANI_HashMultipleBlocks(word32 *state, const word32 *data, s
length -= SHA256::BLOCKSIZE; length -= SHA256::BLOCKSIZE;
} }
TMP = _mm_shuffle_epi32(STATE0, 0x1B); // FEBA TMP = _mm_shuffle_epi32(STATE0, 0x1B); // FEBA
STATE1 = _mm_shuffle_epi32(STATE1, 0xB1); // DCHG STATE1 = _mm_shuffle_epi32(STATE1, 0xB1); // DCHG
STATE0 = _mm_blend_epi16(TMP, STATE1, 0xF0); // DCBA STATE0 = _mm_blend_epi16(TMP, STATE1, 0xF0); // DCBA
STATE1 = _mm_alignr_epi8(STATE1, TMP, 8); // ABEF STATE1 = _mm_alignr_epi8(STATE1, TMP, 8); // ABEF
// Save state // Save state
_mm_storeu_si128(M128_CAST(&state[0]), STATE0); _mm_storeu_si128(M128_CAST(&state[0]), STATE0);
_mm_storeu_si128(M128_CAST(&state[4]), STATE1); _mm_storeu_si128(M128_CAST(&state[4]), STATE1);
} }
ANONYMOUS_NAMESPACE_END
#endif // CRYPTOPP_BOOL_SSE_SHA_INTRINSICS_AVAILABLE #endif // CRYPTOPP_BOOL_SSE_SHA_INTRINSICS_AVAILABLE
///////////////////////////////// /////////////////////////////////
@ -1329,8 +1268,15 @@ static void SHA256_SHANI_HashMultipleBlocks(word32 *state, const word32 *data, s
///////////////////////////////////////////////////////// /////////////////////////////////////////////////////////
#if CRYPTOPP_BOOL_ARM_CRYPTO_INTRINSICS_AVAILABLE #if CRYPTOPP_BOOL_ARM_CRYPTO_INTRINSICS_AVAILABLE
static void SHA256_ARM_SHA_HashMultipleBlocks(word32 *state, const word32 *data, size_t length, ByteOrder order)
ANONYMOUS_NAMESPACE_BEGIN
void SHA256_ARM_SHA_HashMultipleBlocks(word32 *state, const word32 *data, size_t length, ByteOrder order)
{ {
CRYPTOPP_ASSERT(state);
CRYPTOPP_ASSERT(data);
CRYPTOPP_ASSERT(length >= SHA256::BLOCKSIZE);
uint32x4_t STATE0, STATE1, ABEF_SAVE, CDGH_SAVE; uint32x4_t STATE0, STATE1, ABEF_SAVE, CDGH_SAVE;
uint32x4_t MSG0, MSG1, MSG2, MSG3; uint32x4_t MSG0, MSG1, MSG2, MSG3;
uint32x4_t TMP0, TMP1, TMP2; uint32x4_t TMP0, TMP1, TMP2;
@ -1492,7 +1438,10 @@ static void SHA256_ARM_SHA_HashMultipleBlocks(word32 *state, const word32 *data,
vst1q_u32(&state[0], STATE0); vst1q_u32(&state[0], STATE0);
vst1q_u32(&state[4], STATE1); vst1q_u32(&state[4], STATE1);
} }
#endif
ANONYMOUS_NAMESPACE_END
#endif // CRYPTOPP_BOOL_ARM_CRYPTO_INTRINSICS_AVAILABLE
/////////////////////////////////////////////////////// ///////////////////////////////////////////////////////
// end of Walton/Schneiders/O'Rourke/Hovsmith's code // // end of Walton/Schneiders/O'Rourke/Hovsmith's code //
@ -1500,6 +1449,9 @@ static void SHA256_ARM_SHA_HashMultipleBlocks(word32 *state, const word32 *data,
void SHA256::Transform(word32 *state, const word32 *data) void SHA256::Transform(word32 *state, const word32 *data)
{ {
CRYPTOPP_ASSERT(state);
CRYPTOPP_ASSERT(data);
#if CRYPTOPP_BOOL_SSE_SHA_INTRINSICS_AVAILABLE #if CRYPTOPP_BOOL_SSE_SHA_INTRINSICS_AVAILABLE
if (HasSHA()) if (HasSHA())
{ {
@ -1518,6 +1470,104 @@ void SHA256::Transform(word32 *state, const word32 *data)
SHA256_CXX_HashBlock(state, data); SHA256_CXX_HashBlock(state, data);
} }
size_t SHA256::HashMultipleBlocks(const word32 *input, size_t length)
{
CRYPTOPP_ASSERT(input);
CRYPTOPP_ASSERT(length >= SHA256::BLOCKSIZE);
#if CRYPTOPP_BOOL_SSE_SHA_INTRINSICS_AVAILABLE
if (HasSHA())
{
SHA256_SHANI_HashMultipleBlocks(m_state, input, length, BIG_ENDIAN_ORDER);
return length & (SHA256::BLOCKSIZE - 1);
}
#endif
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
if (HasSSE2())
{
const size_t res = length & (SHA256::BLOCKSIZE - 1);
SHA256_SSE_HashMultipleBlocks(m_state, input, length-res);
return res;
}
#endif
#if CRYPTOPP_BOOL_ARM_CRYPTO_INTRINSICS_AVAILABLE
if (HasSHA2())
{
SHA256_ARM_SHA_HashMultipleBlocks(m_state, input, length, BIG_ENDIAN_ORDER);
return length & (SHA256::BLOCKSIZE - 1);
}
#endif
const bool noReverse = NativeByteOrderIs(this->GetByteOrder());
word32 *dataBuf = this->DataBuf();
do
{
if (noReverse)
{
SHA256_CXX_HashBlock(m_state, input);
}
else
{
ByteReverse(dataBuf, input, SHA256::BLOCKSIZE);
SHA256_CXX_HashBlock(m_state, dataBuf);
}
input += SHA256::BLOCKSIZE/sizeof(word32);
length -= SHA256::BLOCKSIZE;
}
while (length >= SHA256::BLOCKSIZE);
return length;
}
size_t SHA224::HashMultipleBlocks(const word32 *input, size_t length)
{
CRYPTOPP_ASSERT(input);
CRYPTOPP_ASSERT(length >= SHA256::BLOCKSIZE);
#if CRYPTOPP_BOOL_SSE_SHA_INTRINSICS_AVAILABLE
if (HasSHA())
{
SHA256_SHANI_HashMultipleBlocks(m_state, input, length, BIG_ENDIAN_ORDER);
return length & (SHA256::BLOCKSIZE - 1);
}
#endif
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
if (HasSSE2())
{
const size_t res = length & (SHA256::BLOCKSIZE - 1);
SHA256_SSE_HashMultipleBlocks(m_state, input, length-res);
return res;
}
#endif
#if CRYPTOPP_BOOL_ARM_CRYPTO_INTRINSICS_AVAILABLE
if (HasSHA2())
{
SHA256_ARM_SHA_HashMultipleBlocks(m_state, input, length, BIG_ENDIAN_ORDER);
return length & (SHA256::BLOCKSIZE - 1);
}
#endif
const bool noReverse = NativeByteOrderIs(this->GetByteOrder());
word32 *dataBuf = this->DataBuf();
do
{
if (noReverse)
{
SHA256_CXX_HashBlock(m_state, input);
}
else
{
ByteReverse(dataBuf, input, SHA256::BLOCKSIZE);
SHA256_CXX_HashBlock(m_state, dataBuf);
}
input += SHA256::BLOCKSIZE/sizeof(word32);
length -= SHA256::BLOCKSIZE;
}
while (length >= SHA256::BLOCKSIZE);
return length;
}
// ************************************************************* // *************************************************************
void SHA384::InitState(HashWordType *state) void SHA384::InitState(HashWordType *state)
@ -1540,11 +1590,8 @@ void SHA512::InitState(HashWordType *state)
memcpy(state, s, sizeof(s)); memcpy(state, s, sizeof(s));
} }
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE && (CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32) CRYPTOPP_ALIGN_DATA(16)
CRYPTOPP_ALIGN_DATA(16) static const word64 SHA512_K[80] CRYPTOPP_SECTION_ALIGN16 = { static const word64 SHA512_K[80] CRYPTOPP_SECTION_ALIGN16 = {
#else
CRYPTOPP_ALIGN_DATA(16) static const word64 SHA512_K[80] CRYPTOPP_SECTION_ALIGN16 = {
#endif
W64LIT(0x428a2f98d728ae22), W64LIT(0x7137449123ef65cd), W64LIT(0x428a2f98d728ae22), W64LIT(0x7137449123ef65cd),
W64LIT(0xb5c0fbcfec4d3b2f), W64LIT(0xe9b5dba58189dbbc), W64LIT(0xb5c0fbcfec4d3b2f), W64LIT(0xe9b5dba58189dbbc),
W64LIT(0x3956c25bf348b538), W64LIT(0x59f111f1b605d019), W64LIT(0x3956c25bf348b538), W64LIT(0x59f111f1b605d019),
@ -1588,8 +1635,10 @@ CRYPTOPP_ALIGN_DATA(16) static const word64 SHA512_K[80] CRYPTOPP_SECTION_ALIGN1
}; };
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE && (CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32) #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE && (CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32)
// put assembly version in separate function, otherwise MSVC 2005 SP1 doesn't generate correct code for the non-assembly version
CRYPTOPP_NAKED static void CRYPTOPP_FASTCALL SHA512_SSE2_Transform(word64 *state, const word64 *data) ANONYMOUS_NAMESPACE_BEGIN
CRYPTOPP_NAKED void CRYPTOPP_FASTCALL SHA512_SSE2_Transform(word64 *state, const word64 *data)
{ {
#ifdef __GNUC__ #ifdef __GNUC__
__asm__ __volatile__ __asm__ __volatile__
@ -1782,28 +1831,25 @@ CRYPTOPP_NAKED static void CRYPTOPP_FASTCALL SHA512_SSE2_Transform(word64 *state
AS1( ret) AS1( ret)
#endif #endif
} }
#endif // #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
void SHA512::Transform(word64 *state, const word64 *data) ANONYMOUS_NAMESPACE_END
{
CRYPTOPP_ASSERT(IsAlignedOn(state, GetAlignmentOf<word64>()));
CRYPTOPP_ASSERT(IsAlignedOn(data, GetAlignmentOf<word64>()));
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE && (CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32) #endif // CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
if (HasSSE2())
{ ANONYMOUS_NAMESPACE_BEGIN
SHA512_SSE2_Transform(state, data);
return;
}
#endif
#define S0(x) (rotrFixed(x,28)^rotrFixed(x,34)^rotrFixed(x,39)) #define S0(x) (rotrFixed(x,28)^rotrFixed(x,34)^rotrFixed(x,39))
#define S1(x) (rotrFixed(x,14)^rotrFixed(x,18)^rotrFixed(x,41)) #define S1(x) (rotrFixed(x,14)^rotrFixed(x,18)^rotrFixed(x,41))
#define s0(x) (rotrFixed(x,1)^rotrFixed(x,8)^(x>>7)) #define s0(x) (rotrFixed(x,1)^rotrFixed(x,8)^(x>>7))
#define s1(x) (rotrFixed(x,19)^rotrFixed(x,61)^(x>>6)) #define s1(x) (rotrFixed(x,19)^rotrFixed(x,61)^(x>>6))
#define R(i) h(i)+=S1(e(i))+Ch(e(i),f(i),g(i))+SHA512_K[i+j]+(j?blk2(i):blk0(i));\ #define R(i) h(i)+=S1(e(i))+Ch(e(i),f(i),g(i))+SHA512_K[i+j]+\
d(i)+=h(i);h(i)+=S0(a(i))+Maj(a(i),b(i),c(i)) (j?blk2(i):blk0(i));d(i)+=h(i);h(i)+=S0(a(i))+Maj(a(i),b(i),c(i))
void SHA512_CXX_HashBlock(word64 *state, const word64 *data)
{
CRYPTOPP_ASSERT(state);
CRYPTOPP_ASSERT(data);
word64 W[16]; word64 W[16];
word64 T[8]; word64 T[8];
@ -1828,7 +1874,25 @@ void SHA512::Transform(word64 *state, const word64 *data)
state[7] += h(0); state[7] += h(0);
} }
ANONYMOUS_NAMESPACE_END
void SHA512::Transform(word64 *state, const word64 *data)
{
CRYPTOPP_ASSERT(state);
CRYPTOPP_ASSERT(data);
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE && (CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32)
if (HasSSE2())
{
SHA512_SSE2_Transform(state, data);
return;
}
#endif
SHA512_CXX_HashBlock(state, data);
}
NAMESPACE_END NAMESPACE_END
#endif // #ifndef CRYPTOPP_GENERATE_X64_MASM #endif // Not CRYPTOPP_GENERATE_X64_MASM
#endif // #ifndef CRYPTOPP_IMPORTS #endif // Not CRYPTOPP_IMPORTS

3
sha.h
View File

@ -2,7 +2,8 @@
//! \file sha.h //! \file sha.h
//! \brief Classes for SHA-1 and SHA-2 family of message digests //! \brief Classes for SHA-1 and SHA-2 family of message digests
//! \since SHA1 since Crypto++ 1.0, SHA2 since Crypto++ 4.0, Intel SHA extensions since Crypto++ 6.0 //! \since SHA1 since Crypto++ 1.0, SHA2 since Crypto++ 4.0,
//! ARM SHA since Crypto++ 6.0, Intel SHA since Crypto++ 6.0
#ifndef CRYPTOPP_SHA_H #ifndef CRYPTOPP_SHA_H
#define CRYPTOPP_SHA_H #define CRYPTOPP_SHA_H