Fix missed conditions for XTR-DH domain parameters generation
Formerly we used asserts and they would fire on occassion. This commit makes the condition part of the generation process to avoid the assert.pull/334/head
parent
c01606e305
commit
44cd7eb1ed
32
xtr.cpp
32
xtr.cpp
|
|
@ -13,7 +13,12 @@ NAMESPACE_BEGIN(CryptoPP)
|
|||
|
||||
const GFP2Element & GFP2Element::Zero()
|
||||
{
|
||||
#if defined(CRYPTOPP_CXX11_DYNAMIC_INIT)
|
||||
static const GFP2Element s_zero;
|
||||
return s_zero;
|
||||
#else
|
||||
return Singleton<GFP2Element>().Ref();
|
||||
#endif
|
||||
}
|
||||
|
||||
void XTR_FindPrimesAndGenerator(RandomNumberGenerator &rng, Integer &p, Integer &q, GFP2Element &g, unsigned int pbits, unsigned int qbits)
|
||||
|
|
@ -26,16 +31,23 @@ void XTR_FindPrimesAndGenerator(RandomNumberGenerator &rng, Integer &p, Integer
|
|||
const Integer minP = Integer::Power2(pbits - 1);
|
||||
const Integer maxP = Integer::Power2(pbits) - 1;
|
||||
|
||||
top:
|
||||
|
||||
Integer r1, r2;
|
||||
do
|
||||
{
|
||||
bool qFound = q.Randomize(rng, minQ, maxQ, Integer::PRIME, 7, 12);
|
||||
CRYPTOPP_UNUSED(qFound); CRYPTOPP_ASSERT(qFound);
|
||||
bool solutionsExist = SolveModularQuadraticEquation(r1, r2, 1, -1, 1, q);
|
||||
CRYPTOPP_UNUSED(solutionsExist); CRYPTOPP_ASSERT(solutionsExist);
|
||||
} while (!p.Randomize(rng, minP, maxP, Integer::PRIME, CRT(rng.GenerateBit()?r1:r2, q, 2, 3, EuclideanMultiplicativeInverse(p, 3)), 3*q));
|
||||
CRYPTOPP_ASSERT(p % 3 == 2);
|
||||
CRYPTOPP_ASSERT(((p.Squared() - p + 1) % q).IsZero());
|
||||
(void)q.Randomize(rng, minQ, maxQ, Integer::PRIME, 7, 12);
|
||||
// Solution always exists because q === 7 mod 12.
|
||||
(void)SolveModularQuadraticEquation(r1, r2, 1, -1, 1, q);
|
||||
// I believe k_i, r1 and r2 are being used slightly different than the
|
||||
// paper's algorithm. I believe it is leading to the failed asserts.
|
||||
// Just make the assert part of the condition.
|
||||
if(!p.Randomize(rng, minP, maxP, Integer::PRIME, CRT(rng.GenerateBit() ?
|
||||
r1 : r2, q, 2, 3, EuclideanMultiplicativeInverse(p, 3)), 3 * q)) { continue; }
|
||||
} while (((p % 3U) != 2) || (((p.Squared() - p + 1) % q).NotZero()));
|
||||
|
||||
// CRYPTOPP_ASSERT((p % 3U) == 2);
|
||||
// CRYPTOPP_ASSERT(((p.Squared() - p + 1) % q).IsZero());
|
||||
|
||||
GFP2_ONB<ModularArithmetic> gfp2(p);
|
||||
GFP2Element three = gfp2.ConvertIn(3), t;
|
||||
|
|
@ -51,7 +63,11 @@ void XTR_FindPrimesAndGenerator(RandomNumberGenerator &rng, Integer &p, Integer
|
|||
if (g != three)
|
||||
break;
|
||||
}
|
||||
CRYPTOPP_ASSERT(XTR_Exponentiate(g, q, p) == three);
|
||||
|
||||
if (XTR_Exponentiate(g, q, p) != three)
|
||||
goto top;
|
||||
|
||||
// CRYPTOPP_ASSERT(XTR_Exponentiate(g, q, p) == three);
|
||||
}
|
||||
|
||||
GFP2Element XTR_Exponentiate(const GFP2Element &b, const Integer &e, const Integer &p)
|
||||
|
|
|
|||
Loading…
Reference in New Issue