Add Power8 SHA support

This provides the functions needed for an implementation. It does not provide the implementation itself

Signed-off-by: Jeffrey Walton <noloader@gmail.com>
pull/484/merge
Jeffrey Walton 2017-09-22 07:44:18 -04:00
parent 2f1b60676f
commit 8b2bf5ed88
1 changed files with 104 additions and 3 deletions

View File

@ -38,7 +38,7 @@ typedef uint64x2_p8 VectorType;
//! \param src the byte array //! \param src the byte array
//! \details ReverseByteArrayLE reverses a 16-byte array on a little endian //! \details ReverseByteArrayLE reverses a 16-byte array on a little endian
//! system. It does nothing on a big endian system. //! system. It does nothing on a big endian system.
void ReverseByteArrayLE(byte src[16]) inline void ReverseByteArrayLE(byte src[16])
{ {
#if defined(CRYPTOPP_XLC_VERSION) && defined(IS_LITTLE_ENDIAN) #if defined(CRYPTOPP_XLC_VERSION) && defined(IS_LITTLE_ENDIAN)
vec_st(vec_reve(vec_ld(0, src)), 0, src); vec_st(vec_reve(vec_ld(0, src)), 0, src);
@ -101,7 +101,7 @@ inline VectorType VectorLoadBE(int off, const uint8_t src[16])
//! \brief Stores a vector to a byte array //! \brief Stores a vector to a byte array
//! \tparam T a vector type //! \tparam T a vector type
//! \param src the vector //! \param src the vector
//! \details Sotres a vector in big endian format to a byte array. //! \details Stores a vector in big endian format to a byte array.
//! VectorStoreBE will swap endianess on little endian systems. //! VectorStoreBE will swap endianess on little endian systems.
//! \note VectorStoreBE does not require an aligned array. //! \note VectorStoreBE does not require an aligned array.
template <class T> template <class T>
@ -188,7 +188,7 @@ inline VectorType VectorLoadKey(int off, const byte src[16])
//! \brief Stores a vector to a byte array //! \brief Stores a vector to a byte array
//! \tparam T a vector type //! \tparam T a vector type
//! \param src the vector //! \param src the vector
//! \details Sotres a vector in big endian format to a byte array. //! \details Stores a vector in big endian format to a byte array.
//! VectorStore will swap endianess on little endian systems. //! VectorStore will swap endianess on little endian systems.
//! \note VectorStoreBE does not require an aligned array. //! \note VectorStoreBE does not require an aligned array.
template<class T> template<class T>
@ -197,24 +197,59 @@ inline void VectorStore(const T& src, byte dest[16])
return VectorStoreBE(src, (uint8_t*)dest); return VectorStoreBE(src, (uint8_t*)dest);
} }
//! \brief Permutes two vectors
//! \tparam T1 a vector type
//! \tparam T2 a vector type
//! \param vec1 the first vector
//! \param vec2 the second vector
//! \param mask vector mask
//! \details VectorPermute returns a new vector from vec1 and vec2
//! based on mask. mask is an uint8x16_p8 type vector. The return
//! vector is the same type as vec1.
template <class T1, class T2> template <class T1, class T2>
inline T1 VectorPermute(const T1& vec1, const T1& vec2, const T2& mask) inline T1 VectorPermute(const T1& vec1, const T1& vec2, const T2& mask)
{ {
return (T1)vec_perm(vec1, vec2, (uint8x16_p8)mask); return (T1)vec_perm(vec1, vec2, (uint8x16_p8)mask);
} }
//! \brief XOR two vectors
//! \tparam T1 a vector type
//! \tparam T2 a vector type
//! \param vec1 the first vector
//! \param vec2 the second vector
//! \details VectorXor returns a new vector from vec1 and vec2. The return
//! vector is the same type as vec1.
template <class T1, class T2> template <class T1, class T2>
inline T1 VectorXor(const T1& vec1, const T2& vec2) inline T1 VectorXor(const T1& vec1, const T2& vec2)
{ {
return (T1)vec_xor(vec1, (T1)vec2); return (T1)vec_xor(vec1, (T1)vec2);
} }
//! \brief Add two vector
//! \tparam T1 a vector type
//! \tparam T2 a vector type
//! \param vec1 the first vector
//! \param vec2 the second vector
//! \details VectorAdd returns a new vector from vec1 and vec2.
//! vec2 is cast to the same type as vec1. The return vector
//! is the same type as vec1.
template <class T1, class T2> template <class T1, class T2>
inline T1 VectorAdd(const T1& vec1, const T2& vec2) inline T1 VectorAdd(const T1& vec1, const T2& vec2)
{ {
return (T1)vec_add(vec1, (T1)vec2); return (T1)vec_add(vec1, (T1)vec2);
} }
//! \brief Shift two vectors left
//! \tparam T1 a vector type
//! \tparam T2 a vector type
//! \param vec1 the first vector
//! \param vec2 the second vector
//! \details VectorShiftLeft returns a new vector from vec1 and vec2.
//! Both vec1 and vec2 are cast to uint8x16_p8. The return vector
//! is the same type as vec1.
//! \note VectorShiftLeft handles the difference between big endian
//! and little endian internally. Call the function as if on a big
//! endian machine.
template <int C, class T1, class T2> template <int C, class T1, class T2>
inline T1 VectorShiftLeft(const T1& vec1, const T2& vec2) inline T1 VectorShiftLeft(const T1& vec1, const T2& vec2)
{ {
@ -225,6 +260,13 @@ inline T1 VectorShiftLeft(const T1& vec1, const T2& vec2)
#endif #endif
} }
//! \brief One round of AES encryption
//! \tparam T1 a vector type
//! \tparam T2 a vector type
//! \param vec1 the state vector
//! \param vec2 the subkey vector
//! \details VectorEncrypt performs one round of AES encryption of state
//! using subkey key. The return vector is the same type as vec1.
template <class T1, class T2> template <class T1, class T2>
inline T1 VectorEncrypt(const T1& state, const T2& key) inline T1 VectorEncrypt(const T1& state, const T2& key)
{ {
@ -237,6 +279,13 @@ inline T1 VectorEncrypt(const T1& state, const T2& key)
#endif #endif
} }
//! \brief Final round of AES encryption
//! \tparam T1 a vector type
//! \tparam T2 a vector type
//! \param vec1 the state vector
//! \param vec2 the subkey vector
//! \details VectorEncryptLast performs the final round of AES encryption
//! of state using subkey key. The return vector is the same type as vec1.
template <class T1, class T2> template <class T1, class T2>
inline T1 VectorEncryptLast(const T1& state, const T2& key) inline T1 VectorEncryptLast(const T1& state, const T2& key)
{ {
@ -249,6 +298,13 @@ inline T1 VectorEncryptLast(const T1& state, const T2& key)
#endif #endif
} }
//! \brief One round of AES decryption
//! \tparam T1 a vector type
//! \tparam T2 a vector type
//! \param vec1 the state vector
//! \param vec2 the subkey vector
//! \details VectorDecrypt performs one round of AES decryption of state
//! using subkey key. The return vector is the same type as vec1.
template <class T1, class T2> template <class T1, class T2>
inline T1 VectorDecrypt(const T1& state, const T2& key) inline T1 VectorDecrypt(const T1& state, const T2& key)
{ {
@ -261,6 +317,13 @@ inline T1 VectorDecrypt(const T1& state, const T2& key)
#endif #endif
} }
//! \brief Final round of AES decryption
//! \tparam T1 a vector type
//! \tparam T2 a vector type
//! \param vec1 the state vector
//! \param vec2 the subkey vector
//! \details VectorDecryptLast performs the final round of AES decryption
//! of state using subkey key. The return vector is the same type as vec1.
template <class T1, class T2> template <class T1, class T2>
inline T1 VectorDecryptLast(const T1& state, const T2& key) inline T1 VectorDecryptLast(const T1& state, const T2& key)
{ {
@ -273,6 +336,44 @@ inline T1 VectorDecryptLast(const T1& state, const T2& key)
#endif #endif
} }
//! \brief SHA512 Sigma functions
//! \tparam func the function
//! \tparam subfunc the sub-function
//! \tparam T a vector type
//! \param vec the block to transform
//! \details VectorSHA512 selects sigma0, sigma1, Sigma0, Sigma1 based on
//! func and subfunc. The return vector is the same type as vec.
template <int func, int subfunc, class T>
inline T VectorSHA512(const T& vec)
{
#if defined(CRYPTOPP_XLC_VERSION)
return (T)__vshasigmad((uint64x2_p8)vec, func, subfunc);
#elif defined(CRYPTOPP_GCC_VERSION)
return (T)__builtin_crypto_vshasigmad((uint64x2_p8)vec, func, subfunc);
#else
CRYPTOPP_ASSERT(0);
#endif
}
//! \brief SHA256 Sigma functions
//! \tparam func the function
//! \tparam subfunc the sub-function
//! \tparam T a vector type
//! \param vec the block to transform
//! \details VectorSHA256 selects sigma0, sigma1, Sigma0, Sigma1 based on
//! func and subfunc. The return vector is the same type as vec.
template <int func, int subfunc, class T>
inline T VectorSHA256(const T& vec)
{
#if defined(CRYPTOPP_XLC_VERSION)
return (T)__vshasigmaw((uint32x4_p8)vec, func, subfunc);
#elif defined(CRYPTOPP_GCC_VERSION)
return (T)__builtin_crypto_vshasigmaw((uint32x4_p8)vec, func, subfunc);
#else
CRYPTOPP_ASSERT(0);
#endif
}
#endif // CRYPTOPP_ALTIVEC_AVAILABLE #endif // CRYPTOPP_ALTIVEC_AVAILABLE
NAMESPACE_END NAMESPACE_END