Add dedicated F2N_Square_256 circuit
parent
7ab75751cd
commit
8b892e2020
9
gf2n.cpp
9
gf2n.cpp
|
|
@ -44,14 +44,17 @@ NAMESPACE_BEGIN(CryptoPP)
|
|||
|
||||
#if defined(CRYPTOPP_CLMUL_AVAILABLE)
|
||||
extern void GF2NT_233_Multiply_Reduce_CLMUL(const word* pA, const word* pB, word* pC);
|
||||
extern void GF2NT_233_Square_Reduce_CLMUL(const word* pA, word* pC);
|
||||
#endif
|
||||
|
||||
#if defined(CRYPTOPP_ARM_PMULL_AVAILABLE)
|
||||
extern void GF2NT_233_Multiply_Reduce_ARMv8(const word* pA, const word* pB, word* pC);
|
||||
extern void GF2NT_233_Square_Reduce_ARMv8(const word* pA, word* pC);
|
||||
#endif
|
||||
|
||||
#if defined(CRYPTOPP_POWER8_VMULL_AVAILABLE)
|
||||
extern void GF2NT_233_Multiply_Reduce_POWER8(const word* pA, const word* pB, word* pC);
|
||||
extern void GF2NT_233_Square_Reduce_POWER8(const word* pA, word* pC);
|
||||
#endif
|
||||
|
||||
PolynomialMod2::PolynomialMod2()
|
||||
|
|
@ -1027,7 +1030,7 @@ const GF2NT::Element& GF2NT233::Square(const Element &a) const
|
|||
const word* pA = a.reg.begin();
|
||||
word* pR = result.reg.begin();
|
||||
|
||||
GF2NT_233_Multiply_Reduce_CLMUL(pA, pA, pR);
|
||||
GF2NT_233_Square_Reduce_CLMUL(pA, pR);
|
||||
return result;
|
||||
}
|
||||
else
|
||||
|
|
@ -1040,7 +1043,7 @@ const GF2NT::Element& GF2NT233::Square(const Element &a) const
|
|||
const word* pA = a.reg.begin();
|
||||
word* pR = result.reg.begin();
|
||||
|
||||
GF2NT_233_Multiply_Reduce_ARMv8(pA, pA, pR);
|
||||
GF2NT_233_Square_Reduce_ARMv8(pA, pR);
|
||||
return result;
|
||||
}
|
||||
else
|
||||
|
|
@ -1053,7 +1056,7 @@ const GF2NT::Element& GF2NT233::Square(const Element &a) const
|
|||
const word* pA = a.reg.begin();
|
||||
word* pR = result.reg.begin();
|
||||
|
||||
GF2NT_233_Multiply_Reduce_POWER8(pA, pA, pR);
|
||||
GF2NT_233_Square_Reduce_POWER8(pA, pR);
|
||||
return result;
|
||||
}
|
||||
else
|
||||
|
|
|
|||
|
|
@ -90,6 +90,17 @@ F2N_Multiply_256x256_ARMv8(uint64x2_t& c3, uint64x2_t& c2, uint64x2_t& c1, uint6
|
|||
c2 = veorq_u64(c2, c5);
|
||||
}
|
||||
|
||||
// c3c2c1c0 = a1a0 * a1a0
|
||||
inline void
|
||||
F2N_Square_256_ARMv8(uint64x2_t& c3, uint64x2_t& c2, uint64x2_t& c1,
|
||||
uint64x2_t& c0, const uint64x2_t& a1, const uint64x2_t& a0)
|
||||
{
|
||||
c0 = PMULL_00(a0, a0);
|
||||
c1 = PMULL_11(a0, a0);
|
||||
c2 = PMULL_00(a1, a1);
|
||||
c3 = PMULL_11(a1, a1);
|
||||
}
|
||||
|
||||
// x = (x << n), z = 0
|
||||
template <unsigned int N>
|
||||
inline uint64x2_t ShiftLeft128_ARMv8(uint64x2_t x)
|
||||
|
|
@ -210,6 +221,17 @@ F2N_Multiply_256x256_CLMUL(__m128i& c3, __m128i& c2, __m128i& c1, __m128i& c0,
|
|||
c2 = _mm_xor_si128(c2, c5);
|
||||
}
|
||||
|
||||
// c3c2c1c0 = a1a0 * a1a0
|
||||
inline void
|
||||
F2N_Square_256_CLMUL(__m128i& c3, __m128i& c2, __m128i& c1,
|
||||
__m128i& c0, const __m128i& a1, const __m128i& a0)
|
||||
{
|
||||
c0 = _mm_clmulepi64_si128(a0, a0, 0x00);
|
||||
c1 = _mm_clmulepi64_si128(a0, a0, 0x11);
|
||||
c2 = _mm_clmulepi64_si128(a1, a1, 0x00);
|
||||
c3 = _mm_clmulepi64_si128(a1, a1, 0x11);
|
||||
}
|
||||
|
||||
// x = (x << n), z = 0
|
||||
template <unsigned int N>
|
||||
inline __m128i ShiftLeft128_SSE(__m128i x, const __m128i& z)
|
||||
|
|
@ -352,6 +374,17 @@ F2N_Multiply_256x256_POWER8(uint64x2_p& c3, uint64x2_p& c2, uint64x2_p& c1, uint
|
|||
c2 = VecXor(c2, c5);
|
||||
}
|
||||
|
||||
// c3c2c1c0 = a1a0 * a1a0
|
||||
inline void
|
||||
F2N_Square_256_POWER8(uint64x2_p& c3, uint64x2_p& c2, uint64x2_p& c1,
|
||||
uint64x2_p& c0, const uint64x2_p& a1, const uint64x2_p& a0)
|
||||
{
|
||||
c0 = VecPolyMultiply00LE(a0, a0);
|
||||
c1 = VecPolyMultiply11LE(a0, a0);
|
||||
c2 = VecPolyMultiply00LE(a1, a1);
|
||||
c3 = VecPolyMultiply11LE(a1, a1);
|
||||
}
|
||||
|
||||
// x = (x << n), z = 0
|
||||
template <unsigned int N>
|
||||
inline uint64x2_p ShiftLeft128_POWER8(uint64x2_p x)
|
||||
|
|
@ -447,6 +480,22 @@ GF2NT_233_Multiply_Reduce_CLMUL(const word* pA, const word* pB, word* pC)
|
|||
_mm_storeu_si128(pCC+1, c1);
|
||||
}
|
||||
|
||||
void
|
||||
GF2NT_233_Square_Reduce_CLMUL(const word* pA, word* pC)
|
||||
{
|
||||
const __m128i* pAA = reinterpret_cast<const __m128i*>(pA);
|
||||
__m128i a0 = _mm_loadu_si128(pAA+0);
|
||||
__m128i a1 = _mm_loadu_si128(pAA+1);
|
||||
|
||||
__m128i c0, c1, c2, c3;
|
||||
F2N_Square_256_CLMUL(c3, c2, c1, c0, a1, a0);
|
||||
GF2NT_233_Reduce_CLMUL(c3, c2, c1, c0);
|
||||
|
||||
__m128i* pCC = reinterpret_cast<__m128i*>(pC);
|
||||
_mm_storeu_si128(pCC+0, c0);
|
||||
_mm_storeu_si128(pCC+1, c1);
|
||||
}
|
||||
|
||||
#elif defined(CRYPTOPP_ARM_PMULL_AVAILABLE)
|
||||
|
||||
void
|
||||
|
|
@ -471,6 +520,24 @@ GF2NT_233_Multiply_Reduce_ARMv8(const word* pA, const word* pB, word* pC)
|
|||
vst1q_u32(pCC+4, vreinterpretq_u32_u64(c1));
|
||||
}
|
||||
|
||||
void
|
||||
GF2NT_233_Square_Reduce_ARMv8(const word* pA, word* pC)
|
||||
{
|
||||
// word is either 32-bit or 64-bit, depending on the platform.
|
||||
// Load using a 32-bit pointer to avoid possible alignment issues.
|
||||
const uint32_t* pAA = reinterpret_cast<const uint32_t*>(pA);
|
||||
uint64x2_t a0 = vreinterpretq_u64_u32(vld1q_u32(pAA+0));
|
||||
uint64x2_t a1 = vreinterpretq_u64_u32(vld1q_u32(pAA+4));
|
||||
|
||||
uint64x2_t c0, c1, c2, c3;
|
||||
F2N_Square_256_ARMv8(c3, c2, c1, c0, a1, a0);
|
||||
GF2NT_233_Reduce_ARMv8(c3, c2, c1, c0);
|
||||
|
||||
uint32_t* pCC = reinterpret_cast<uint32_t*>(pC);
|
||||
vst1q_u32(pCC+0, vreinterpretq_u32_u64(c0));
|
||||
vst1q_u32(pCC+4, vreinterpretq_u32_u64(c1));
|
||||
}
|
||||
|
||||
#elif defined(CRYPTOPP_POWER8_VMULL_AVAILABLE)
|
||||
|
||||
void
|
||||
|
|
@ -509,6 +576,38 @@ GF2NT_233_Multiply_Reduce_POWER8(const word* pA, const word* pB, word* pC)
|
|||
VecStore(c1, pCC+16);
|
||||
}
|
||||
|
||||
void
|
||||
GF2NT_233_Square_Reduce_POWER8(const word* pA, word* pC)
|
||||
{
|
||||
// word is either 32-bit or 64-bit, depending on the platform.
|
||||
// Load using a byte pointer to avoid possible alignment issues.
|
||||
const byte* pAA = reinterpret_cast<const byte*>(pA);
|
||||
uint64x2_p a0 = (uint64x2_p)VecLoad(pAA+0);
|
||||
uint64x2_p a1 = (uint64x2_p)VecLoad(pAA+16);
|
||||
|
||||
#if (CRYPTOPP_BIG_ENDIAN)
|
||||
const uint8_t mb[] = {4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11};
|
||||
const uint8x16_p m = (uint8x16_p)VecLoad(mb);
|
||||
a0 = VecPermute(a0, m);
|
||||
a1 = VecPermute(a1, m);
|
||||
b0 = VecPermute(b0, m);
|
||||
b1 = VecPermute(b1, m);
|
||||
#endif
|
||||
|
||||
uint64x2_p c0, c1, c2, c3;
|
||||
F2N_Square_256_POWER8(c3, c2, c1, c0, a1, a0);
|
||||
GF2NT_233_Reduce_POWER8(c3, c2, c1, c0);
|
||||
|
||||
#if (CRYPTOPP_BIG_ENDIAN)
|
||||
c0 = VecPermute(c0, m);
|
||||
c1 = VecPermute(c1, m);
|
||||
#endif
|
||||
|
||||
byte* pCC = reinterpret_cast<byte*>(pC);
|
||||
VecStore(c0, pCC+0);
|
||||
VecStore(c1, pCC+16);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
NAMESPACE_END
|
||||
|
|
|
|||
Loading…
Reference in New Issue