Use complete addition algorithms in ECP (GH #869)
This is the initial cut-in of complete addition algorithms according to https://eprint.iacr.org/2015/1060.pdf. There are two outstanding problems. First, HMQV and FHMQV are failing self tests. We need to investigate further. Second, we cannot use the new algorithms on paths where a Montgomery representation is used. We need to investigate further. This cut-in will allow us to proceed on evaluating the timing leaks.pull/871/head
parent
176cab0dc5
commit
9366be5615
450
ecp.cpp
450
ecp.cpp
|
|
@ -243,33 +243,15 @@ const ECP::Point& ECP::Inverse(const Point &P) const
|
||||||
|
|
||||||
const ECP::Point& ECP::Add(const Point &P, const Point &Q) const
|
const ECP::Point& ECP::Add(const Point &P, const Point &Q) const
|
||||||
{
|
{
|
||||||
if (P.identity) return Q;
|
AdditionFunction add(*this);
|
||||||
if (Q.identity) return P;
|
m_R = add(P, Q);
|
||||||
if (GetField().Equal(P.x, Q.x))
|
|
||||||
return GetField().Equal(P.y, Q.y) ? Double(P) : Identity();
|
|
||||||
|
|
||||||
FieldElement t = GetField().Subtract(Q.y, P.y);
|
|
||||||
t = GetField().Divide(t, GetField().Subtract(Q.x, P.x));
|
|
||||||
FieldElement x = GetField().Subtract(GetField().Subtract(GetField().Square(t), P.x), Q.x);
|
|
||||||
m_R.y = GetField().Subtract(GetField().Multiply(t, GetField().Subtract(P.x, x)), P.y);
|
|
||||||
|
|
||||||
m_R.x.swap(x);
|
|
||||||
m_R.identity = false;
|
|
||||||
return m_R;
|
return m_R;
|
||||||
}
|
}
|
||||||
|
|
||||||
const ECP::Point& ECP::Double(const Point &P) const
|
const ECP::Point& ECP::Double(const Point &P) const
|
||||||
{
|
{
|
||||||
if (P.identity || P.y==GetField().Identity()) return Identity();
|
AdditionFunction add(*this);
|
||||||
|
m_R = add(P);
|
||||||
FieldElement t = GetField().Square(P.x);
|
|
||||||
t = GetField().Add(GetField().Add(GetField().Double(t), t), m_a);
|
|
||||||
t = GetField().Divide(t, GetField().Double(P.y));
|
|
||||||
FieldElement x = GetField().Subtract(GetField().Subtract(GetField().Square(t), P.x), P.x);
|
|
||||||
m_R.y = GetField().Subtract(GetField().Multiply(t, GetField().Subtract(P.x, x)), P.y);
|
|
||||||
|
|
||||||
m_R.x.swap(x);
|
|
||||||
m_R.identity = false;
|
|
||||||
return m_R;
|
return m_R;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
@ -495,6 +477,430 @@ ECP::Point ECP::CascadeScalarMultiply(const Point &P, const Integer &k1, const P
|
||||||
return AbstractGroup<Point>::CascadeScalarMultiply(P, k1, Q, k2);
|
return AbstractGroup<Point>::CascadeScalarMultiply(P, k1, Q, k2);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#define X p.x
|
||||||
|
#define Y p.y
|
||||||
|
#define Z p.z
|
||||||
|
|
||||||
|
#define X1 p.x
|
||||||
|
#define Y1 p.y
|
||||||
|
#define Z1 p.z
|
||||||
|
|
||||||
|
#define X2 q.x
|
||||||
|
#define Y2 q.y
|
||||||
|
#define Z2 q.z
|
||||||
|
|
||||||
|
#define X3 r.x
|
||||||
|
#define Y3 r.y
|
||||||
|
#define Z3 r.z
|
||||||
|
|
||||||
|
ECP::AdditionFunction::AdditionFunction(const ECP& ecp)
|
||||||
|
: m_ecp(ecp), m_alpha(static_cast<Alpha>(0))
|
||||||
|
{
|
||||||
|
if (ecp.GetField().IsMontgomeryRepresentation())
|
||||||
|
{
|
||||||
|
// std::cerr << "Montgomery, skipping" << std::endl;
|
||||||
|
m_alpha = A_Montgomery;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
// std::cerr << "non-Montgomery, continuing" << std::endl;
|
||||||
|
if (m_ecp.m_a == 0)
|
||||||
|
{
|
||||||
|
m_alpha = A_0;
|
||||||
|
}
|
||||||
|
else if (m_ecp.m_a == -3 || (m_ecp.m_a - m_ecp.GetField().GetModulus()) == -3)
|
||||||
|
{
|
||||||
|
m_alpha = A_3;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
m_alpha = A_Star;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
ECP::Point ECP::AdditionFunction::operator()(const Point& P) const
|
||||||
|
{
|
||||||
|
if (m_alpha == A_3)
|
||||||
|
{
|
||||||
|
// Gyrations attempt to maintain constant-timeness
|
||||||
|
// We need either (P.x, P.y, 1) or (0, 1, 0).
|
||||||
|
const Integer x = P.x * !P.identity;
|
||||||
|
const Integer y = P.y * !P.identity + 1 * P.identity;
|
||||||
|
const Integer z = 1 * !P.identity;
|
||||||
|
|
||||||
|
ProjectivePoint p(x, y, z), r;
|
||||||
|
const ECP::Field& field = m_ecp.GetField();
|
||||||
|
|
||||||
|
const FieldElement& a = m_ecp.m_a;
|
||||||
|
const FieldElement& b = m_ecp.m_b;
|
||||||
|
|
||||||
|
FieldElement t0 = field.Square(X);
|
||||||
|
FieldElement t1 = field.Square(Y);
|
||||||
|
FieldElement t2 = field.Square(Z);
|
||||||
|
FieldElement t3 = field.Multiply(X,Y);
|
||||||
|
t3 = field.Add(t3,t3);
|
||||||
|
Z3 = field.Multiply(X,Z);
|
||||||
|
Z3 = field.Add(Z3,Z3);
|
||||||
|
Y3 = field.Multiply(b,t2);
|
||||||
|
Y3 = field.Subtract(Y3,Z3);
|
||||||
|
X3 = field.Add(Y3,Y3);
|
||||||
|
Y3 = field.Add(X3,Y3);
|
||||||
|
X3 = field.Subtract(t1,Y3);
|
||||||
|
Y3 = field.Add(t1,Y3);
|
||||||
|
Y3 = field.Multiply(X3,Y3);
|
||||||
|
X3 = field.Multiply(X3,t3);
|
||||||
|
t3 = field.Add(t2,t2);
|
||||||
|
t2 = field.Add(t2,t3);
|
||||||
|
Z3 = field.Multiply(b,Z3);
|
||||||
|
Z3 = field.Subtract(Z3,t2);
|
||||||
|
Z3 = field.Subtract(Z3,t0);
|
||||||
|
t3 = field.Add(Z3,Z3);
|
||||||
|
Z3 = field.Add(Z3,t3);
|
||||||
|
t3 = field.Add(t0,t0);
|
||||||
|
t0 = field.Add(t3,t0);
|
||||||
|
t0 = field.Subtract(t0,t2);
|
||||||
|
t0 = field.Multiply(t0,Z3);
|
||||||
|
Y3 = field.Add(Y3,t0);
|
||||||
|
t0 = field.Multiply(Y,Z);
|
||||||
|
t0 = field.Add(t0,t0);
|
||||||
|
Z3 = field.Multiply(t0,Z3);
|
||||||
|
X3 = field.Subtract(X3,Z3);
|
||||||
|
Z3 = field.Multiply(t0,t1);
|
||||||
|
Z3 = field.Add(Z3,Z3);
|
||||||
|
Z3 = field.Add(Z3,Z3);
|
||||||
|
|
||||||
|
const FieldElement inv = field.MultiplicativeInverse(Z3.IsZero() ? Integer::One() : Z3);
|
||||||
|
const ECP::Point ret(field.Multiply(X3, inv), field.Multiply(Y3, inv));
|
||||||
|
|
||||||
|
if (Z3.IsZero())
|
||||||
|
return m_ecp.Identity();
|
||||||
|
else
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
else if (m_alpha == A_0)
|
||||||
|
{
|
||||||
|
// Gyrations attempt to maintain constant-timeness
|
||||||
|
// We need either (P.x, P.y, 1) or (0, 1, 0).
|
||||||
|
const Integer x = P.x * !P.identity;
|
||||||
|
const Integer y = P.y * !P.identity + 1 * P.identity;
|
||||||
|
const Integer z = 1 * !P.identity;
|
||||||
|
|
||||||
|
ProjectivePoint p(x, y, z), r;
|
||||||
|
const ECP::Field& field = m_ecp.GetField();
|
||||||
|
|
||||||
|
const FieldElement& a = m_ecp.m_a;
|
||||||
|
const FieldElement b3 = field.Multiply(m_ecp.m_b, 3);
|
||||||
|
|
||||||
|
FieldElement t0 = field.Square(Y);
|
||||||
|
Z3 = field.Add(t0,t0);
|
||||||
|
Z3 = field.Add(Z3,Z3);
|
||||||
|
Z3 = field.Add(Z3,Z3);
|
||||||
|
FieldElement t1 = field.Add(Y,Z);
|
||||||
|
FieldElement t2 = field.Square(Z);
|
||||||
|
t2 = field.Multiply(b3,t2);
|
||||||
|
X3 = field.Multiply(t2,Z3);
|
||||||
|
Y3 = field.Add(t0,t2);
|
||||||
|
Z3 = field.Multiply(t1,Z3);
|
||||||
|
t1 = field.Add(t2,t2);
|
||||||
|
t2 = field.Add(t1,t2);
|
||||||
|
t0 = field.Subtract(t0,t2);
|
||||||
|
Y3 = field.Multiply(t0,Y3);
|
||||||
|
Y3 = field.Add(X3,Y3);
|
||||||
|
t1 = field.Multiply(X,Y);
|
||||||
|
X3 = field.Multiply(t0,t1);
|
||||||
|
X3 = field.Add(X3,X3);
|
||||||
|
|
||||||
|
const FieldElement inv = field.MultiplicativeInverse(Z3.IsZero() ? Integer::One() : Z3);
|
||||||
|
const ECP::Point ret(field.Multiply(X3, inv), field.Multiply(Y3, inv));
|
||||||
|
|
||||||
|
if (Z3.IsZero())
|
||||||
|
return m_ecp.Identity();
|
||||||
|
else
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
else if (m_alpha == A_Star)
|
||||||
|
{
|
||||||
|
// Gyrations attempt to maintain constant-timeness
|
||||||
|
// We need either (P.x, P.y, 1) or (0, 1, 0).
|
||||||
|
const Integer x = P.x * !P.identity;
|
||||||
|
const Integer y = P.y * !P.identity + 1 * P.identity;
|
||||||
|
const Integer z = 1 * !P.identity;
|
||||||
|
|
||||||
|
ProjectivePoint p(x, y, z), r;
|
||||||
|
const ECP::Field& field = m_ecp.GetField();
|
||||||
|
|
||||||
|
const FieldElement& a = m_ecp.m_a;
|
||||||
|
const FieldElement b3 = field.Multiply(m_ecp.m_b, 3);
|
||||||
|
|
||||||
|
FieldElement t0 = field.Square(Y);
|
||||||
|
Z3 = field.Add(t0,t0);
|
||||||
|
Z3 = field.Add(Z3,Z3);
|
||||||
|
Z3 = field.Add(Z3,Z3);
|
||||||
|
FieldElement t1 = field.Add(Y,Z);
|
||||||
|
FieldElement t2 = field.Square(Z);
|
||||||
|
t2 = field.Multiply(b3,t2);
|
||||||
|
X3 = field.Multiply(t2,Z3);
|
||||||
|
Y3 = field.Add(t0,t2);
|
||||||
|
Z3 = field.Multiply(t1,Z3);
|
||||||
|
t1 = field.Add(t2,t2);
|
||||||
|
t2 = field.Add(t1,t2);
|
||||||
|
t0 = field.Subtract(t0,t2);
|
||||||
|
Y3 = field.Multiply(t0,Y3);
|
||||||
|
Y3 = field.Add(X3,Y3);
|
||||||
|
t1 = field.Multiply(X,Y);
|
||||||
|
X3 = field.Multiply(t0,t1);
|
||||||
|
X3 = field.Add(X3,X3);
|
||||||
|
|
||||||
|
const FieldElement inv = field.MultiplicativeInverse(Z3.IsZero() ? Integer::One() : Z3);
|
||||||
|
const ECP::Point ret(field.Multiply(X3, inv), field.Multiply(Y3, inv));
|
||||||
|
|
||||||
|
if (Z3.IsZero())
|
||||||
|
return m_ecp.Identity();
|
||||||
|
else
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
else // A_Montgomery
|
||||||
|
{
|
||||||
|
ECP::Point& m_R = m_ecp.m_R;
|
||||||
|
const ECP::Field& field = m_ecp.GetField();
|
||||||
|
|
||||||
|
if (P.identity || P.y==field.Identity()) return m_ecp.Identity();
|
||||||
|
|
||||||
|
FieldElement t = field.Square(P.x);
|
||||||
|
t = field.Add(field.Add(field.Double(t), t), m_ecp.m_a);
|
||||||
|
t = field.Divide(t, field.Double(P.y));
|
||||||
|
FieldElement x = field.Subtract(field.Subtract(field.Square(t), P.x), P.x);
|
||||||
|
m_R.y = field.Subtract(field.Multiply(t, field.Subtract(P.x, x)), P.y);
|
||||||
|
|
||||||
|
m_R.x.swap(x);
|
||||||
|
m_R.identity = false;
|
||||||
|
return m_R;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
ECP::Point ECP::AdditionFunction::operator()(const Point& P, const Point& Q) const
|
||||||
|
{
|
||||||
|
// Disabled at the moment due to HMQV and FHMQV failures
|
||||||
|
if (m_alpha == A_3 && false)
|
||||||
|
{
|
||||||
|
// Gyrations attempt to maintain constant-timeness
|
||||||
|
// We need either (P.x, P.y, 1) or (0, 1, 0).
|
||||||
|
const Integer x1 = P.x * !P.identity;
|
||||||
|
const Integer y1 = P.y * !P.identity + 1 * P.identity;
|
||||||
|
const Integer z1 = 1 * !P.identity;
|
||||||
|
|
||||||
|
const Integer x2 = Q.x * !Q.identity;
|
||||||
|
const Integer y2 = Q.y * !Q.identity + 1 * Q.identity;
|
||||||
|
const Integer z2 = 1 * !Q.identity;
|
||||||
|
|
||||||
|
ProjectivePoint p(x1, y1, z1), q(x2, y2, z2), r;
|
||||||
|
const ECP::Field& field = m_ecp.GetField();
|
||||||
|
|
||||||
|
const FieldElement& a = m_ecp.m_a;
|
||||||
|
const FieldElement& b = m_ecp.m_b;
|
||||||
|
|
||||||
|
FieldElement t0 = field.Multiply(X1,X2);
|
||||||
|
FieldElement t1 = field.Multiply(Y1,Y2);
|
||||||
|
FieldElement t2 = field.Multiply(Z1,Z2);
|
||||||
|
FieldElement t3 = field.Add(X1,Y1);
|
||||||
|
FieldElement t4 = field.Add(X2,Y2);
|
||||||
|
t3 = field.Multiply(t3,t4);
|
||||||
|
t4 = field.Add(t0,t1);
|
||||||
|
t3 = field.Subtract(t3,t4);
|
||||||
|
t4 = field.Add(Y1,Z1);
|
||||||
|
X3 = field.Add(Y2,Z2);
|
||||||
|
t4 = field.Multiply(t4,X3);
|
||||||
|
X3 = field.Add(t1,t2);
|
||||||
|
t4 = field.Subtract(t4,X3);
|
||||||
|
X3 = field.Add(X1,Z1);
|
||||||
|
Y3 = field.Add(X2,Z2);
|
||||||
|
X3 = field.Multiply(X3,Y3);
|
||||||
|
Y3 = field.Add(t0,t2);
|
||||||
|
Y3 = field.Subtract(X3,Y3);
|
||||||
|
Z3 = field.Multiply(b,t2);
|
||||||
|
X3 = field.Subtract(Y3,Z3);
|
||||||
|
Z3 = field.Add(X3,X3);
|
||||||
|
X3 = field.Add(X3,Z3);
|
||||||
|
Z3 = field.Subtract(t1,X3);
|
||||||
|
X3 = field.Add(t1,X3);
|
||||||
|
Y3 = field.Multiply(b,Y3);
|
||||||
|
t1 = field.Add(t2,t2);
|
||||||
|
t2 = field.Add(t1,t2);
|
||||||
|
Y3 = field.Subtract(Y3,t2);
|
||||||
|
Y3 = field.Subtract(Y3,t0);
|
||||||
|
t1 = field.Add(Y3,Y3);
|
||||||
|
Y3 = field.Add(t1,Y3);
|
||||||
|
t1 = field.Add(t0,t0);
|
||||||
|
t0 = field.Add(t1,t0);
|
||||||
|
t0 = field.Subtract(t0,t2);
|
||||||
|
t1 = field.Multiply(t4,Y3);
|
||||||
|
t2 = field.Multiply(t0,Y3);
|
||||||
|
Y3 = field.Multiply(X3,Z3);
|
||||||
|
Y3 = field.Add(Y3,t2);
|
||||||
|
X3 = field.Multiply(t3,X3);
|
||||||
|
X3 = field.Subtract(X3,t1);
|
||||||
|
Z3 = field.Multiply(t4,Z3);
|
||||||
|
t1 = field.Multiply(t3,t0);
|
||||||
|
Z3 = field.Add(Z3,t1);
|
||||||
|
|
||||||
|
const FieldElement inv = field.MultiplicativeInverse(Z3.IsZero() ? Integer::One() : Z3);
|
||||||
|
const ECP::Point ret(field.Multiply(X3, inv), field.Multiply(Y3, inv));
|
||||||
|
|
||||||
|
if (Z3.IsZero())
|
||||||
|
return m_ecp.Identity();
|
||||||
|
else
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
else if (m_alpha == A_0)
|
||||||
|
{
|
||||||
|
// Gyrations attempt to maintain constant-timeness
|
||||||
|
// We need either (P.x, P.y, 1) or (0, 1, 0).
|
||||||
|
const Integer x1 = P.x * !P.identity;
|
||||||
|
const Integer y1 = P.y * !P.identity + 1 * P.identity;
|
||||||
|
const Integer z1 = 1 * !P.identity;
|
||||||
|
|
||||||
|
const Integer x2 = Q.x * !Q.identity;
|
||||||
|
const Integer y2 = Q.y * !Q.identity + 1 * Q.identity;
|
||||||
|
const Integer z2 = 1 * !Q.identity;
|
||||||
|
|
||||||
|
ProjectivePoint p(x1, y1, z1), q(x2, y2, z2), r;
|
||||||
|
const ECP::Field& field = m_ecp.GetField();
|
||||||
|
|
||||||
|
const FieldElement& a = m_ecp.m_a;
|
||||||
|
const FieldElement b3 = field.Multiply(m_ecp.m_b, 3);
|
||||||
|
|
||||||
|
FieldElement t0 = field.Square(Y);
|
||||||
|
Z3 = field.Add(t0,t0);
|
||||||
|
Z3 = field.Add(Z3,Z3);
|
||||||
|
Z3 = field.Add(Z3,Z3);
|
||||||
|
FieldElement t1 = field.Add(Y,Z);
|
||||||
|
FieldElement t2 = field.Square(Z);
|
||||||
|
t2 = field.Multiply(b3,t2);
|
||||||
|
X3 = field.Multiply(t2,Z3);
|
||||||
|
Y3 = field.Add(t0,t2);
|
||||||
|
Z3 = field.Multiply(t1,Z3);
|
||||||
|
t1 = field.Add(t2,t2);
|
||||||
|
t2 = field.Add(t1,t2);
|
||||||
|
t0 = field.Subtract(t0,t2);
|
||||||
|
Y3 = field.Multiply(t0,Y3);
|
||||||
|
Y3 = field.Add(X3,Y3);
|
||||||
|
t1 = field.Multiply(X,Y);
|
||||||
|
X3 = field.Multiply(t0,t1);
|
||||||
|
X3 = field.Add(X3,X3);
|
||||||
|
|
||||||
|
const FieldElement inv = field.MultiplicativeInverse(Z3.IsZero() ? Integer::One() : Z3);
|
||||||
|
const ECP::Point ret(field.Multiply(X3, inv), field.Multiply(Y3, inv));
|
||||||
|
|
||||||
|
if (Z3.IsZero())
|
||||||
|
return m_ecp.Identity();
|
||||||
|
else
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
else if (m_alpha == A_Star)
|
||||||
|
{
|
||||||
|
// Gyrations attempt to maintain constant-timeness
|
||||||
|
// We need either (P.x, P.y, 1) or (0, 1, 0).
|
||||||
|
const Integer x1 = P.x * !P.identity;
|
||||||
|
const Integer y1 = P.y * !P.identity + 1 * P.identity;
|
||||||
|
const Integer z1 = 1 * !P.identity;
|
||||||
|
|
||||||
|
const Integer x2 = Q.x * !Q.identity;
|
||||||
|
const Integer y2 = Q.y * !Q.identity + 1 * Q.identity;
|
||||||
|
const Integer z2 = 1 * !Q.identity;
|
||||||
|
|
||||||
|
ProjectivePoint p(x1, y1, z1), q(x2, y2, z2), r;
|
||||||
|
const ECP::Field& field = m_ecp.GetField();
|
||||||
|
|
||||||
|
const FieldElement& a = m_ecp.m_a;
|
||||||
|
const FieldElement b3 = field.Multiply(m_ecp.m_b, 3);
|
||||||
|
|
||||||
|
FieldElement t0 = field.Multiply(X1,X2);
|
||||||
|
FieldElement t1 = field.Multiply(Y1,Y2);
|
||||||
|
FieldElement t2 = field.Multiply(Z1,Z2);
|
||||||
|
FieldElement t3 = field.Add(X1,Y1);
|
||||||
|
FieldElement t4 = field.Add(X2,Y2);
|
||||||
|
t3 = field.Multiply(t3,t4);
|
||||||
|
t4 = field.Add(t0,t1);
|
||||||
|
t3 = field.Subtract(t3,t4);
|
||||||
|
t4 = field.Add(X1,Z1);
|
||||||
|
FieldElement t5 = field.Add(X2,Z2);
|
||||||
|
t4 = field.Multiply(t4,t5);
|
||||||
|
t5 = field.Add(t0,t2);
|
||||||
|
t4 = field.Subtract(t4,t5);
|
||||||
|
t5 = field.Add(Y1,Z1);
|
||||||
|
X3 = field.Add(Y2,Z2);
|
||||||
|
t5 = field.Multiply(t5,X3);
|
||||||
|
X3 = field.Add(t1,t2);
|
||||||
|
t5 = field.Subtract(t5,X3);
|
||||||
|
Z3 = field.Multiply(a,t4);
|
||||||
|
X3 = field.Multiply(b3,t2);
|
||||||
|
Z3 = field.Add(X3,Z3);
|
||||||
|
X3 = field.Subtract(t1,Z3);
|
||||||
|
Z3 = field.Add(t1,Z3);
|
||||||
|
Y3 = field.Multiply(X3,Z3);
|
||||||
|
t1 = field.Add(t0,t0);
|
||||||
|
t1 = field.Add(t1,t0);
|
||||||
|
t2 = field.Multiply(a,t2);
|
||||||
|
t4 = field.Multiply(b3,t4);
|
||||||
|
t1 = field.Add(t1,t2);
|
||||||
|
t2 = field.Subtract(t0,t2);
|
||||||
|
t2 = field.Multiply(a,t2);
|
||||||
|
t4 = field.Add(t4,t2);
|
||||||
|
t0 = field.Multiply(t1,t4);
|
||||||
|
Y3 = field.Add(Y3,t0);
|
||||||
|
t0 = field.Multiply(t5,t4);
|
||||||
|
X3 = field.Multiply(t3,X3);
|
||||||
|
X3 = field.Subtract(X3,t0);
|
||||||
|
t0 = field.Multiply(t3,t1);
|
||||||
|
Z3 = field.Multiply(t5,Z3);
|
||||||
|
Z3 = field.Add(Z3,t0);
|
||||||
|
|
||||||
|
const FieldElement inv = field.MultiplicativeInverse(Z3.IsZero() ? Integer::One() : Z3);
|
||||||
|
const ECP::Point ret(field.Multiply(X3, inv), field.Multiply(Y3, inv));
|
||||||
|
|
||||||
|
if (Z3.IsZero())
|
||||||
|
return m_ecp.Identity();
|
||||||
|
else
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
else // A_Montgomery
|
||||||
|
{
|
||||||
|
ECP::Point& m_R = m_ecp.m_R;
|
||||||
|
const ECP::Field& field = m_ecp.GetField();
|
||||||
|
|
||||||
|
if (P.identity) return Q;
|
||||||
|
if (Q.identity) return P;
|
||||||
|
if (field.Equal(P.x, Q.x))
|
||||||
|
return field.Equal(P.y, Q.y) ? m_ecp.Double(P) : m_ecp.Identity();
|
||||||
|
|
||||||
|
FieldElement t = field.Subtract(Q.y, P.y);
|
||||||
|
t = field.Divide(t, field.Subtract(Q.x, P.x));
|
||||||
|
FieldElement x = field.Subtract(field.Subtract(field.Square(t), P.x), Q.x);
|
||||||
|
m_R.y = field.Subtract(field.Multiply(t, field.Subtract(P.x, x)), P.y);
|
||||||
|
|
||||||
|
m_R.x.swap(x);
|
||||||
|
m_R.identity = false;
|
||||||
|
return m_R;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#undef X
|
||||||
|
#undef Y
|
||||||
|
#undef Z
|
||||||
|
|
||||||
|
#undef X1
|
||||||
|
#undef Y1
|
||||||
|
#undef Z1
|
||||||
|
|
||||||
|
#undef X2
|
||||||
|
#undef Y2
|
||||||
|
#undef Z2
|
||||||
|
|
||||||
|
#undef X3
|
||||||
|
#undef Y3
|
||||||
|
#undef Z3
|
||||||
|
|
||||||
NAMESPACE_END
|
NAMESPACE_END
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
|
||||||
34
ecp.h
34
ecp.h
|
|
@ -106,6 +106,40 @@ public:
|
||||||
bool operator==(const ECP &rhs) const
|
bool operator==(const ECP &rhs) const
|
||||||
{return GetField() == rhs.GetField() && m_a == rhs.m_a && m_b == rhs.m_b;}
|
{return GetField() == rhs.GetField() && m_a == rhs.m_a && m_b == rhs.m_b;}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
/// \brief Addition and Double functions
|
||||||
|
/// \sa <A HREF="https://eprint.iacr.org/2015/1060.pdf">Complete
|
||||||
|
/// addition formulas for prime order elliptic curves</A>
|
||||||
|
class AdditionFunction
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
explicit AdditionFunction(const ECP& ecp);
|
||||||
|
// Double(P)
|
||||||
|
Point operator()(const Point& P) const;
|
||||||
|
// Add(P, Q)
|
||||||
|
Point operator()(const Point& P, const Point& Q) const;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
const ECP& m_ecp;
|
||||||
|
|
||||||
|
/// \brief Parameters and representation for Addition
|
||||||
|
/// \details Addition and Doubling will use different algorithms,
|
||||||
|
/// depending on the <tt>A</tt> coefficient and the representation
|
||||||
|
/// (Affine or Montgomery).
|
||||||
|
enum Alpha {
|
||||||
|
/// \brief Coefficient A is 0
|
||||||
|
A_0=1,
|
||||||
|
/// \brief Coefficient A is -3
|
||||||
|
A_3=2,
|
||||||
|
/// \brief Coefficient A is arbitrary
|
||||||
|
A_Star=4,
|
||||||
|
/// \brief Representation is Montgomery
|
||||||
|
A_Montgomery=8
|
||||||
|
};
|
||||||
|
|
||||||
|
Alpha m_alpha;
|
||||||
|
};
|
||||||
|
|
||||||
private:
|
private:
|
||||||
clonable_ptr<Field> m_fieldPtr;
|
clonable_ptr<Field> m_fieldPtr;
|
||||||
FieldElement m_a, m_b;
|
FieldElement m_a, m_b;
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue