diff --git a/ecpm.cpp b/ecpm.cpp deleted file mode 100644 index 163308de..00000000 --- a/ecpm.cpp +++ /dev/null @@ -1,396 +0,0 @@ -// ecpm.cpp - written and placed in public domain by Jean-Pierre Muench. Copyright assigned to the Crypto++ project. - -#include "pch.h" - -#ifndef CRYPTOPP_IMPORTS - -#include "ecp.h" -#include "ecpm.h" -#include "asn.h" -#include "integer.h" -#include "nbtheory.h" -#include "modarith.h" -#include "filters.h" -#include "algebra.cpp" - -NAMESPACE_BEGIN(CryptoPP) - -ANONYMOUS_NAMESPACE_BEGIN -static inline ECP::Point ToMontgomery(const ModularArithmetic &mr, const ECP::Point &P) // straight from ecp.cpp -{ - return P.identity ? P : ECP::Point(mr.ConvertIn(P.x), mr.ConvertIn(P.y)); -} - -static inline ECP::Point FromMontgomery(const ModularArithmetic &mr, const ECP::Point &P) // straight from ecp.cpp -{ - return P.identity ? P : ECP::Point(mr.ConvertOut(P.x), mr.ConvertOut(P.y)); -} -static inline ECP* GenerateWeierstrassCurve(const ECPM& MontgomeryCurve) -{ - const Integer& A = MontgomeryCurve.GetA(); - const Integer& B = MontgomeryCurve.GetB(); - const ModularArithmetic& Field = MontgomeryCurve.GetField(); - - // now construct the equivalent Weierstrass curve - // refer to https://crypto.stackexchange.com/q/27842 for the details - // use m_FieldPtr to ensure encoding (eventual Montgomery Representation) is handled correctly - //the transformations also appear independently on http ://safecurves.cr.yp.to/equation.html - - // a = (3-A)/(3B^2) - Integer aWeierstrass = Field.Subtract(3, Field.Square(A)); // a = 3 - A - aWeierstrass = Field.Divide(aWeierstrass, Field.Multiply(3, Field.Square(B))); // a = a / (3B^2) - // b = (2A^3-9A) / (27 B^3) - Integer bWeierstrass = Field.Multiply(A, Field.Subtract(Field.Multiply(2, Field.Square(A)), 9)); // b = A(2A^2-9) - bWeierstrass = Field.Divide(bWeierstrass, Field.Multiply(27, Field.Exponentiate(B, 3))); // b = b / (27 B^3) - - return new ECP(MontgomeryCurve.GetField().GetModulus(), aWeierstrass, bWeierstrass); -} -NAMESPACE_END - -ECPM::ECPM(const Integer &modulus, const FieldElement &A, const FieldElement &B): - m_fieldPtr(new Field(modulus)) -{ - // store A and B for later use - m_A = A.IsNegative() ? (A + modulus) : A;// straight from ecp.cpp - m_B = B.IsNegative() ? (B + modulus) : B;// straight from ecp.cpp - - m_ComputeEngine.reset(GenerateWeierstrassCurve(*this)); - - // to speed up the conversions - m_AThirds = m_fieldPtr->Divide(m_A, 3); - m_BInv = m_fieldPtr->MultiplicativeInverse(m_B); -} - -// straight adaption from ecp.cpp -ECPM::ECPM(const ECPM &ecpm, bool convertToMontgomeryRepresentation) -{ - if (convertToMontgomeryRepresentation && !ecpm.GetField().IsMontgomeryRepresentation()) - { - m_fieldPtr.reset(new MontgomeryRepresentation(ecpm.GetField().GetModulus())); - m_ComputeEngine.reset(new ECP(*ecpm.m_ComputeEngine.get(),convertToMontgomeryRepresentation)); - m_A = GetField().ConvertIn(ecpm.m_A); - m_B = GetField().ConvertIn(ecpm.m_B); - m_AThirds = GetField().ConvertIn(ecpm.m_AThirds); - m_BInv = GetField().ConvertIn(ecpm.m_BInv); - } - else - operator=(ecpm); -} - -ECPM::ECPM(BufferedTransformation &bt) - : m_fieldPtr(new Field(bt)) -{ - BERSequenceDecoder seq(bt); - GetField().BERDecodeElement(seq, m_A); - GetField().BERDecodeElement(seq, m_B); - // skip optional seed - if (!seq.EndReached()) - { - SecByteBlock seed; - unsigned int unused; - BERDecodeBitString(seq, seed, unused); - } - seq.MessageEnd(); - - m_ComputeEngine.reset(GenerateWeierstrassCurve(*this)); - - m_AThirds = m_fieldPtr->Divide(m_A, 3); - m_BInv = m_fieldPtr->MultiplicativeInverse(m_B); -} - -// straight adaption from ecp.cpp -void ECPM::DEREncode(BufferedTransformation &bt) const -{ - GetField().DEREncode(bt); - DERSequenceEncoder seq(bt); - GetField().DEREncodeElement(seq, m_A); - GetField().DEREncodeElement(seq, m_B); - seq.MessageEnd(); -} - -// straight adaption from ecp.cpp -bool ECPM::DecodePoint(ECPM::Point &P, const byte *encodedPoint, size_t encodedPointLen) const -{ - StringStore store(encodedPoint, encodedPointLen); - return DecodePoint(P, store, encodedPointLen); -} - -// straight adaption from ecp.cpp -bool ECPM::DecodePoint(ECPM::Point &P, BufferedTransformation &bt, size_t encodedPointLen) const -{ - byte type; - if (encodedPointLen < 1 || !bt.Get(type)) - return false; - - switch (type) - { - case 0: - P.identity = true; - return true; - case 2: - case 3: - { - if (encodedPointLen != EncodedPointSize(true)) - return false; - - Integer p = FieldSize(); - - P.identity = false; - P.x.Decode(bt, GetField().MaxElementByteLength()); - // curve is: By^2=x^3+Ax^2+x <=> y=sqrt(x/B(x(A+x)+1) - P.y = (m_BInv * P.x *(P.x * (P.x + m_A) + Integer::One()))%p; - - if (Jacobi(P.y, p) != 1) - return false; - - P.y = ModularSquareRoot(P.y, p); - - if ((type & 1) != P.y.GetBit(0)) - P.y = p - P.y; - - return true; - } - case 4: - { - if (encodedPointLen != EncodedPointSize(false)) - return false; - - unsigned int len = GetField().MaxElementByteLength(); - P.identity = false; - P.x.Decode(bt, len); - P.y.Decode(bt, len); - return true; - } - default: - return false; - } -} - -// straight adaption from ecp.cpp -void ECPM::EncodePoint(BufferedTransformation &bt, const Point &P, bool compressed) const -{ - if (P.identity) - NullStore().TransferTo(bt, EncodedPointSize(compressed)); - else if (compressed) - { - bt.Put(2 + P.y.GetBit(0)); - P.x.Encode(bt, GetField().MaxElementByteLength()); - } - else - { - unsigned int len = GetField().MaxElementByteLength(); - bt.Put(4); // uncompressed - P.x.Encode(bt, len); - P.y.Encode(bt, len); - } -} - -// straight adaption from ecp.cpp -void ECPM::EncodePoint(byte *encodedPoint, const Point &P, bool compressed) const -{ - ArraySink sink(encodedPoint, EncodedPointSize(compressed)); - EncodePoint(sink, P, compressed); - assert(sink.TotalPutLength() == EncodedPointSize(compressed)); -} - -// straight adaption from ecp.cpp -ECPM::Point ECPM::BERDecodePoint(BufferedTransformation &bt) const -{ - SecByteBlock str; - BERDecodeOctetString(bt, str); - Point P; - if (!DecodePoint(P, str, str.size())) - BERDecodeError(); - return P; -} - -// straight adaption from ecp.cpp -void ECPM::DEREncodePoint(BufferedTransformation &bt, const Point &P, bool compressed) const -{ - SecByteBlock str(EncodedPointSize(compressed)); - EncodePoint(str, P, compressed); - DEREncodeOctetString(bt, str); -} - -// straight adaption from ecp.cpp -bool ECPM::ValidateParameters(RandomNumberGenerator &rng, unsigned int level) const -{ - Integer p = FieldSize(); - - bool pass = p.IsOdd(); - pass = pass && !m_A.IsNegative() && m_A
= 1) - pass = pass && ((m_B * (m_A * m_A - 4)) % p).IsPositive(); - - if (level >= 2) - pass = pass && VerifyPrime(rng, p); - - return pass; -} - -// straight adaption from ecp.cpp -bool ECPM::VerifyPoint(const Point &P) const -{ - const FieldElement &x = P.x, &y = P.y; - Integer p = FieldSize(); - - // use the field arithmetic here, in case our data is in Montgomery form - // ecp.cpp does this with plain integer arithmetic -> will fail if montgomery representation is on, but was never called when montgomery representation was on - const FieldElement IsOnCurve = m_fieldPtr->Subtract(m_fieldPtr->Multiply(x,(m_fieldPtr->Add(1,m_fieldPtr->Multiply(x,(m_fieldPtr->Add(m_A,x)))))),m_fieldPtr->Multiply(m_B,m_fieldPtr->Square(y))); - - return P.identity || - (!x.IsNegative() && x
0 == x(1+x(A+x))-By^2
-}
-
-// straight adaption from ecp.cpp
-bool ECPM::Equal(const Point &P, const Point &Q) const
-{
- if (P.identity && Q.identity)
- return true;
-
- if (P.identity && !Q.identity)
- return false;
-
- if (!P.identity && Q.identity)
- return false;
-
- return (GetField().Equal(P.x, Q.x) && GetField().Equal(P.y, Q.y));
-}
-
-// straight adaption from ecp.cpp
-const ECPM::Point& ECPM::Identity() const
-{
- return Singleton