Add CHAM64 SSSE3 implementation (PR #670)

CHAM64 from 20 cpb to 14 cpb on modern iCore. CHAM64 from 90 cpb to 18 cpb antique Core2 Duo
pull/676/head
Jeffrey Walton 2018-06-21 00:37:10 -04:00
parent a80b1d35b0
commit b00a378a8d
No known key found for this signature in database
GPG Key ID: B36AB348921B1838
4 changed files with 955 additions and 9 deletions

View File

@ -12,6 +12,7 @@
// using two encrypt (or decrypt) functions: one that operates on 4 blocks,
// and one that operates on 1 block.
//
// * AdvancedProcessBlocks64_2x1_SSE
// * AdvancedProcessBlocks64_4x1_SSE
// * AdvancedProcessBlocks128_4x1_SSE
// * AdvancedProcessBlocks64_6x2_SSE
@ -718,6 +719,155 @@ NAMESPACE_END // CryptoPP
NAMESPACE_BEGIN(CryptoPP)
template <typename F1, typename F2, typename W>
inline size_t GCC_NO_UBSAN AdvancedProcessBlocks64_2x1_SSE(F1 func1, F2 func2,
const W *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 8);
CRYPTOPP_ALIGN_DATA(16)
const word32 s_one32x4_1b[] = {0, 0, 0, 1<<24};
CRYPTOPP_ALIGN_DATA(16)
const word32 s_one32x4_2b[] = {0, 2<<24, 0, 2<<24};
const ptrdiff_t blockSize = 8;
const ptrdiff_t xmmBlockSize = 16;
ptrdiff_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : xmmBlockSize;
ptrdiff_t xorIncrement = (xorBlocks != NULLPTR) ? xmmBlockSize : 0;
ptrdiff_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : xmmBlockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks += static_cast<ptrdiff_t>(length) - xmmBlockSize;
xorBlocks += static_cast<ptrdiff_t>(length) - xmmBlockSize;
outBlocks += static_cast<ptrdiff_t>(length) - xmmBlockSize;
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 2*xmmBlockSize)
{
__m128i block0, block1;
if (flags & BT_InBlockIsCounter)
{
// For 64-bit block ciphers we need to load the CTR block, which is 8 bytes.
// After the dup load we have two counters in the XMM word. Then we need
// to increment the low ctr by 0 and the high ctr by 1.
block0 = _mm_add_epi32(*CONST_M128_CAST(s_one32x4_1b), _mm_castpd_si128(
_mm_loaddup_pd(CONST_DOUBLE_CAST(inBlocks))));
// After initial increment of {0,1} remaining counters increment by {2,2}.
const __m128i be2 = *CONST_M128_CAST(s_one32x4_2b);
block1 = _mm_add_epi32(be2, block0);
// Store the next counter. UBsan false positive; mem_addr can be unaligned.
_mm_store_sd(DOUBLE_CAST(inBlocks),
_mm_castsi128_pd(_mm_add_epi64(be2, block1)));
}
else
{
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
}
if (xorInput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
func2(block0, block1, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
_mm_storeu_si128(M128_CAST(outBlocks), block0);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block1);
outBlocks += outIncrement;
length -= 2*xmmBlockSize;
}
}
if (length)
{
// Adjust to real block size
if (flags & BT_ReverseDirection)
{
inIncrement += inIncrement ? blockSize : 0;
xorIncrement += xorIncrement ? blockSize : 0;
outIncrement += outIncrement ? blockSize : 0;
inBlocks -= inIncrement;
xorBlocks -= xorIncrement;
outBlocks -= outIncrement;
}
else
{
inIncrement -= inIncrement ? blockSize : 0;
xorIncrement -= xorIncrement ? blockSize : 0;
outIncrement -= outIncrement ? blockSize : 0;
}
while (length >= blockSize)
{
__m128i block = _mm_castpd_si128(
// UBsan false positive; mem_addr can be unaligned.
_mm_load_sd(CONST_DOUBLE_CAST(inBlocks)));
if (xorInput)
{
block = _mm_xor_si128(block, _mm_castpd_si128(
// UBsan false positive; mem_addr can be unaligned.
_mm_load_sd(CONST_DOUBLE_CAST(xorBlocks))));
}
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[7]++;
func1(block, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block = _mm_xor_si128(block, _mm_castpd_si128(
// UBsan false positive; mem_addr can be unaligned.
_mm_load_sd(CONST_DOUBLE_CAST(xorBlocks))));
}
// UBsan false positive; mem_addr can be unaligned.
_mm_store_sd(DOUBLE_CAST(outBlocks), _mm_castsi128_pd(block));
inBlocks += inIncrement;
outBlocks += outIncrement;
xorBlocks += xorIncrement;
length -= blockSize;
}
}
return length;
}
/// \brief AdvancedProcessBlocks for 2 and 6 blocks
/// \tparam F2 function to process 2 64-bit blocks
/// \tparam F6 function to process 6 64-bit blocks

View File

@ -24,10 +24,754 @@
ANONYMOUS_NAMESPACE_BEGIN
using CryptoPP::word16;
using CryptoPP::word32;
#if (CRYPTOPP_SSSE3_AVAILABLE)
//////////////////////////////////////////////////////////////////////////
NAMESPACE_BEGIN(W16) // CHAM64, 16-bit word size
template <unsigned int R>
inline __m128i RotateLeft16(const __m128i& val)
{
return _mm_or_si128(
_mm_slli_epi16(val, R), _mm_srli_epi16(val, 16-R));
}
template <unsigned int R>
inline __m128i RotateRight16(const __m128i& val)
{
return _mm_or_si128(
_mm_slli_epi16(val, 16-R), _mm_srli_epi16(val, R));
}
// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
template <>
inline __m128i RotateLeft16<8>(const __m128i& val)
{
const __m128i mask = _mm_set_epi8(14,15, 12,13, 10,11, 8,9, 6,7, 4,5, 2,3, 0,1);
return _mm_shuffle_epi8(val, mask);
}
// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
template <>
inline __m128i RotateRight16<8>(const __m128i& val)
{
const __m128i mask = _mm_set_epi8(14,15, 12,13, 10,11, 8,9, 6,7, 4,5, 2,3, 0,1);
return _mm_shuffle_epi8(val, mask);
}
template <unsigned int IDX>
inline __m128i UnpackXMM(__m128i a, __m128i b, __m128i c, __m128i d,
__m128i e, __m128i f, __m128i g, __m128i h)
{
// Should not be instantiated
CRYPTOPP_ASSERT(0);;
return _mm_setzero_si128();
}
template <>
inline __m128i UnpackXMM<0>(__m128i a, __m128i b, __m128i c, __m128i d,
__m128i e, __m128i f, __m128i g, __m128i h)
{
// The shuffle converts to and from little-endian for SSE. A specialized
// CHAM implementation can avoid the shuffle by framing the data for
// encryption, decrementryption and benchmarks. The library cannot take the
// speed-up because of the byte oriented API.
const __m128i r1 = _mm_unpacklo_epi16(a, b);
const __m128i r2 = _mm_unpacklo_epi16(c, d);
const __m128i r3 = _mm_unpacklo_epi16(e, f);
const __m128i r4 = _mm_unpacklo_epi16(g, h);
const __m128i r5 = _mm_unpacklo_epi32(r1, r2);
const __m128i r6 = _mm_unpacklo_epi32(r3, r4);
return _mm_shuffle_epi8(_mm_unpacklo_epi64(r5, r6),
_mm_set_epi8(14,15,12,13, 10,11,8,9, 6,7,4,5, 2,3,0,1));
}
template <>
inline __m128i UnpackXMM<1>(__m128i a, __m128i b, __m128i c, __m128i d,
__m128i e, __m128i f, __m128i g, __m128i h)
{
// The shuffle converts to and from little-endian for SSE. A specialized
// CHAM implementation can avoid the shuffle by framing the data for
// encryption, decrementryption and benchmarks. The library cannot take the
// speed-up because of the byte oriented API.
const __m128i r1 = _mm_unpacklo_epi16(a, b);
const __m128i r2 = _mm_unpacklo_epi16(c, d);
const __m128i r3 = _mm_unpacklo_epi16(e, f);
const __m128i r4 = _mm_unpacklo_epi16(g, h);
const __m128i r5 = _mm_unpacklo_epi32(r1, r2);
const __m128i r6 = _mm_unpacklo_epi32(r3, r4);
return _mm_shuffle_epi8(_mm_unpackhi_epi64(r5, r6),
_mm_set_epi8(14,15,12,13, 10,11,8,9, 6,7,4,5, 2,3,0,1));
}
template <>
inline __m128i UnpackXMM<2>(__m128i a, __m128i b, __m128i c, __m128i d,
__m128i e, __m128i f, __m128i g, __m128i h)
{
// The shuffle converts to and from little-endian for SSE. A specialized
// CHAM implementation can avoid the shuffle by framing the data for
// encryption, decrementryption and benchmarks. The library cannot take the
// speed-up because of the byte oriented API.
const __m128i r1 = _mm_unpacklo_epi16(a, b);
const __m128i r2 = _mm_unpacklo_epi16(c, d);
const __m128i r3 = _mm_unpacklo_epi16(e, f);
const __m128i r4 = _mm_unpacklo_epi16(g, h);
const __m128i r5 = _mm_unpackhi_epi32(r1, r2);
const __m128i r6 = _mm_unpackhi_epi32(r3, r4);
return _mm_shuffle_epi8(_mm_unpacklo_epi64(r5, r6),
_mm_set_epi8(14,15,12,13, 10,11,8,9, 6,7,4,5, 2,3,0,1));
}
template <>
inline __m128i UnpackXMM<3>(__m128i a, __m128i b, __m128i c, __m128i d,
__m128i e, __m128i f, __m128i g, __m128i h)
{
// The shuffle converts to and from little-endian for SSE. A specialized
// CHAM implementation can avoid the shuffle by framing the data for
// encryption, decrementryption and benchmarks. The library cannot take the
// speed-up because of the byte oriented API.
const __m128i r1 = _mm_unpacklo_epi16(a, b);
const __m128i r2 = _mm_unpacklo_epi16(c, d);
const __m128i r3 = _mm_unpacklo_epi16(e, f);
const __m128i r4 = _mm_unpacklo_epi16(g, h);
const __m128i r5 = _mm_unpackhi_epi32(r1, r2);
const __m128i r6 = _mm_unpackhi_epi32(r3, r4);
return _mm_shuffle_epi8(_mm_unpackhi_epi64(r5, r6),
_mm_set_epi8(14,15,12,13, 10,11,8,9, 6,7,4,5, 2,3,0,1));
}
template <>
inline __m128i UnpackXMM<4>(__m128i a, __m128i b, __m128i c, __m128i d,
__m128i e, __m128i f, __m128i g, __m128i h)
{
// The shuffle converts to and from little-endian for SSE. A specialized
// CHAM implementation can avoid the shuffle by framing the data for
// encryption, decrementryption and benchmarks. The library cannot take the
// speed-up because of the byte oriented API.
const __m128i r1 = _mm_unpackhi_epi16(a, b);
const __m128i r2 = _mm_unpackhi_epi16(c, d);
const __m128i r3 = _mm_unpackhi_epi16(e, f);
const __m128i r4 = _mm_unpackhi_epi16(g, h);
const __m128i r5 = _mm_unpacklo_epi32(r1, r2);
const __m128i r6 = _mm_unpacklo_epi32(r3, r4);
return _mm_shuffle_epi8(_mm_unpacklo_epi64(r5, r6),
_mm_set_epi8(14,15,12,13, 10,11,8,9, 6,7,4,5, 2,3,0,1));
}
template <>
inline __m128i UnpackXMM<5>(__m128i a, __m128i b, __m128i c, __m128i d,
__m128i e, __m128i f, __m128i g, __m128i h)
{
// The shuffle converts to and from little-endian for SSE. A specialized
// CHAM implementation can avoid the shuffle by framing the data for
// encryption, decrementryption and benchmarks. The library cannot take the
// speed-up because of the byte oriented API.
const __m128i r1 = _mm_unpackhi_epi16(a, b);
const __m128i r2 = _mm_unpackhi_epi16(c, d);
const __m128i r3 = _mm_unpackhi_epi16(e, f);
const __m128i r4 = _mm_unpackhi_epi16(g, h);
const __m128i r5 = _mm_unpacklo_epi32(r1, r2);
const __m128i r6 = _mm_unpacklo_epi32(r3, r4);
return _mm_shuffle_epi8(_mm_unpackhi_epi64(r5, r6),
_mm_set_epi8(14,15,12,13, 10,11,8,9, 6,7,4,5, 2,3,0,1));
}
template <>
inline __m128i UnpackXMM<6>(__m128i a, __m128i b, __m128i c, __m128i d,
__m128i e, __m128i f, __m128i g, __m128i h)
{
// The shuffle converts to and from little-endian for SSE. A specialized
// CHAM implementation can avoid the shuffle by framing the data for
// encryption, decrementryption and benchmarks. The library cannot take the
// speed-up because of the byte oriented API.
const __m128i r1 = _mm_unpackhi_epi16(a, b);
const __m128i r2 = _mm_unpackhi_epi16(c, d);
const __m128i r3 = _mm_unpackhi_epi16(e, f);
const __m128i r4 = _mm_unpackhi_epi16(g, h);
const __m128i r5 = _mm_unpackhi_epi32(r1, r2);
const __m128i r6 = _mm_unpackhi_epi32(r3, r4);
return _mm_shuffle_epi8(_mm_unpacklo_epi64(r5, r6),
_mm_set_epi8(14,15,12,13, 10,11,8,9, 6,7,4,5, 2,3,0,1));
}
template <>
inline __m128i UnpackXMM<7>(__m128i a, __m128i b, __m128i c, __m128i d,
__m128i e, __m128i f, __m128i g, __m128i h)
{
// The shuffle converts to and from little-endian for SSE. A specialized
// CHAM implementation can avoid the shuffle by framing the data for
// encryption, decrementryption and benchmarks. The library cannot take the
// speed-up because of the byte oriented API.
const __m128i r1 = _mm_unpackhi_epi16(a, b);
const __m128i r2 = _mm_unpackhi_epi16(c, d);
const __m128i r3 = _mm_unpackhi_epi16(e, f);
const __m128i r4 = _mm_unpackhi_epi16(g, h);
const __m128i r5 = _mm_unpackhi_epi32(r1, r2);
const __m128i r6 = _mm_unpackhi_epi32(r3, r4);
return _mm_shuffle_epi8(_mm_unpackhi_epi64(r5, r6),
_mm_set_epi8(14,15,12,13, 10,11,8,9, 6,7,4,5, 2,3,0,1));
}
template <unsigned int IDX>
inline __m128i UnpackXMM(__m128i v)
{
// Should not be instantiated
CRYPTOPP_ASSERT(0);;
return _mm_setzero_si128();
}
template <>
inline __m128i UnpackXMM<0>(__m128i v)
{
return _mm_shuffle_epi8(v, _mm_set_epi8(0,1, 0,1, 0,1, 0,1, 0,1, 0,1, 0,1, 0,1));
}
template <>
inline __m128i UnpackXMM<1>(__m128i v)
{
return _mm_shuffle_epi8(v, _mm_set_epi8(2,3, 2,3, 2,3, 2,3, 2,3, 2,3, 2,3, 2,3));
}
template <>
inline __m128i UnpackXMM<2>(__m128i v)
{
return _mm_shuffle_epi8(v, _mm_set_epi8(4,5, 4,5, 4,5, 4,5, 4,5, 4,5, 4,5, 4,5));
}
template <>
inline __m128i UnpackXMM<3>(__m128i v)
{
return _mm_shuffle_epi8(v, _mm_set_epi8(6,7, 6,7, 6,7, 6,7, 6,7, 6,7, 6,7, 6,7));
}
template <>
inline __m128i UnpackXMM<4>(__m128i v)
{
return _mm_shuffle_epi8(v, _mm_set_epi8(8,9, 8,9, 8,9, 8,9, 8,9, 8,9, 8,9, 8,9));
}
template <>
inline __m128i UnpackXMM<5>(__m128i v)
{
return _mm_shuffle_epi8(v, _mm_set_epi8(10,11, 10,11, 10,11, 10,11, 10,11, 10,11, 10,11, 10,11));
}
template <>
inline __m128i UnpackXMM<6>(__m128i v)
{
return _mm_shuffle_epi8(v, _mm_set_epi8(12,13, 12,13, 12,13, 12,13, 12,13, 12,13, 12,13, 12,13));
}
template <>
inline __m128i UnpackXMM<7>(__m128i v)
{
return _mm_shuffle_epi8(v, _mm_set_epi8(14,15, 14,15, 14,15, 14,15, 14,15, 14,15, 14,15, 14,15));
}
template <unsigned int IDX>
inline __m128i UnpackXMM(__m128i a, __m128i b)
{
const __m128i z = _mm_setzero_si128();
return UnpackXMM<IDX>(a, b, z, z, z, z, z, z);
}
template <unsigned int IDX>
inline __m128i RepackXMM(__m128i a, __m128i b, __m128i c, __m128i d,
__m128i e, __m128i f, __m128i g, __m128i h)
{
return UnpackXMM<IDX>(a, b, c, d, e, f, g, h);
}
template <unsigned int IDX>
inline __m128i RepackXMM(__m128i v)
{
return UnpackXMM<IDX>(v);
}
inline void GCC_NO_UBSAN CHAM64_Enc_Block(__m128i &block0,
const word16 *subkeys, unsigned int /*rounds*/)
{
// Rearrange the data for vectorization. UnpackXMM includes a
// little-endian swap for SSE. Thanks to Peter Cordes for help
// with packing and unpacking.
// [A1 A2 .. A6 A7][B1 B2 .. B6 B7] ... => [A1 B1 .. G1 H1][A2 B2 .. G2 H2] ...
__m128i a = UnpackXMM<0>(block0);
__m128i b = UnpackXMM<1>(block0);
__m128i c = UnpackXMM<2>(block0);
__m128i d = UnpackXMM<3>(block0);
__m128i e = UnpackXMM<4>(block0);
__m128i f = UnpackXMM<5>(block0);
__m128i g = UnpackXMM<6>(block0);
__m128i h = UnpackXMM<7>(block0);
const unsigned int rounds = 80;
__m128i counter = _mm_set_epi16(0,0,0,0,0,0,0,0);
__m128i increment = _mm_set_epi16(1,1,1,1,1,1,1,1);
const unsigned int MASK = 15;
for (int i=0; i<static_cast<int>(rounds); i+=8)
{
__m128i k, kr, t1, t2, t3, t4;
k = _mm_loadu_si128((const __m128i*) &subkeys[i & MASK]);
kr = _mm_shuffle_epi8(k, _mm_set_epi8(1,0,1,0, 1,0,1,0, 1,0,1,0, 1,0,1,0));
t1 = _mm_xor_si128(a, counter);
t3 = _mm_xor_si128(e, counter);
t2 = _mm_xor_si128(RotateLeft16<1>(b), kr);
t4 = _mm_xor_si128(RotateLeft16<1>(f), kr);
a = RotateLeft16<8>(_mm_add_epi16(t1, t2));
e = RotateLeft16<8>(_mm_add_epi16(t3, t4));
counter = _mm_add_epi16(counter, increment);
kr = _mm_shuffle_epi8(k, _mm_set_epi8(3,2,3,2, 3,2,3,2, 3,2,3,2, 3,2,3,2));
t1 = _mm_xor_si128(b, counter);
t3 = _mm_xor_si128(f, counter);
t2 = _mm_xor_si128(RotateLeft16<8>(c), kr);
t4 = _mm_xor_si128(RotateLeft16<8>(g), kr);
b = RotateLeft16<1>(_mm_add_epi16(t1, t2));
f = RotateLeft16<1>(_mm_add_epi16(t3, t4));
counter = _mm_add_epi16(counter, increment);
kr = _mm_shuffle_epi8(k, _mm_set_epi8(5,4,5,4, 5,4,5,4, 5,4,5,4, 5,4,5,4));
t1 = _mm_xor_si128(c, counter);
t3 = _mm_xor_si128(g, counter);
t2 = _mm_xor_si128(RotateLeft16<1>(d), kr);
t4 = _mm_xor_si128(RotateLeft16<1>(h), kr);
c = RotateLeft16<8>(_mm_add_epi16(t1, t2));
g = RotateLeft16<8>(_mm_add_epi16(t3, t4));
counter = _mm_add_epi16(counter, increment);
kr = _mm_shuffle_epi8(k, _mm_set_epi8(7,6,7,6, 7,6,7,6, 7,6,7,6, 7,6,7,6));
t1 = _mm_xor_si128(d, counter);
t3 = _mm_xor_si128(h, counter);
t2 = _mm_xor_si128(RotateLeft16<8>(a), kr);
t4 = _mm_xor_si128(RotateLeft16<8>(e), kr);
d = RotateLeft16<1>(_mm_add_epi16(t1, t2));
h = RotateLeft16<1>(_mm_add_epi16(t3, t4));
counter = _mm_add_epi16(counter, increment);
kr = _mm_shuffle_epi8(k, _mm_set_epi8(9,8,9,8, 9,8,9,8, 9,8,9,8, 9,8,9,8));
t1 = _mm_xor_si128(a, counter);
t3 = _mm_xor_si128(e, counter);
t2 = _mm_xor_si128(RotateLeft16<1>(b), kr);
t4 = _mm_xor_si128(RotateLeft16<1>(f), kr);
a = RotateLeft16<8>(_mm_add_epi16(t1, t2));
e = RotateLeft16<8>(_mm_add_epi16(t3, t4));
counter = _mm_add_epi16(counter, increment);
kr = _mm_shuffle_epi8(k, _mm_set_epi8(11,10,11,10, 11,10,11,10, 11,10,11,10, 11,10,11,10));
t1 = _mm_xor_si128(b, counter);
t3 = _mm_xor_si128(f, counter);
t2 = _mm_xor_si128(RotateLeft16<8>(c), kr);
t4 = _mm_xor_si128(RotateLeft16<8>(g), kr);
b = RotateLeft16<1>(_mm_add_epi16(t1, t2));
f = RotateLeft16<1>(_mm_add_epi16(t3, t4));
counter = _mm_add_epi16(counter, increment);
kr = _mm_shuffle_epi8(k, _mm_set_epi8(13,12,13,12, 13,12,13,12, 13,12,13,12, 13,12,13,12));
t1 = _mm_xor_si128(c, counter);
t3 = _mm_xor_si128(g, counter);
t2 = _mm_xor_si128(RotateLeft16<1>(d), kr);
t4 = _mm_xor_si128(RotateLeft16<1>(h), kr);
c = RotateLeft16<8>(_mm_add_epi16(t1, t2));
g = RotateLeft16<8>(_mm_add_epi16(t3, t4));
counter = _mm_add_epi16(counter, increment);
kr = _mm_shuffle_epi8(k, _mm_set_epi8(15,14,15,14, 15,14,15,14, 15,14,15,14, 15,14,15,14));
t1 = _mm_xor_si128(d, counter);
t3 = _mm_xor_si128(h, counter);
t2 = _mm_xor_si128(RotateLeft16<8>(a), kr);
t4 = _mm_xor_si128(RotateLeft16<8>(e), kr);
d = RotateLeft16<1>(_mm_add_epi16(t1, t2));
h = RotateLeft16<1>(_mm_add_epi16(t3, t4));
counter = _mm_add_epi16(counter, increment);
}
// [A1 B1 .. G1 H1][A2 B2 .. G2 H2] ... => [A1 A2 .. A6 A7][B1 B2 .. B6 B7] ...
block0 = RepackXMM<0>(a,b,c,d,e,f,g,h);
}
inline void GCC_NO_UBSAN CHAM64_Dec_Block(__m128i &block0,
const word16 *subkeys, unsigned int /*rounds*/)
{
// Rearrange the data for vectorization. UnpackXMM includes a
// little-endian swap for SSE. Thanks to Peter Cordes for help
// with packing and unpacking.
// [A1 A2 .. A6 A7][B1 B2 .. B6 B7] ... => [A1 B1 .. G1 H1][A2 B2 .. G2 H2] ...
__m128i a = UnpackXMM<0>(block0);
__m128i b = UnpackXMM<1>(block0);
__m128i c = UnpackXMM<2>(block0);
__m128i d = UnpackXMM<3>(block0);
__m128i e = UnpackXMM<4>(block0);
__m128i f = UnpackXMM<5>(block0);
__m128i g = UnpackXMM<6>(block0);
__m128i h = UnpackXMM<7>(block0);
const unsigned int rounds = 80;
__m128i counter = _mm_set_epi16(rounds-1,rounds-1,rounds-1,rounds-1, rounds-1,rounds-1,rounds-1,rounds-1);
__m128i decrement = _mm_set_epi16(1,1,1,1,1,1,1,1);
const unsigned int MASK = 15;
for (int i = static_cast<int>(rounds)-1; i >= 0; i-=8)
{
__m128i k, kr, t1, t2, t3, t4;
k = _mm_loadu_si128((const __m128i*) &subkeys[(i-7) & MASK]);
kr = _mm_shuffle_epi8(k, _mm_set_epi8(15,14,15,14, 15,14,15,14, 15,14,15,14, 15,14,15,14));
// Odd round
t1 = RotateRight16<1>(d);
t3 = RotateRight16<1>(h);
t2 = _mm_xor_si128(RotateLeft16<8>(a), kr);
t4 = _mm_xor_si128(RotateLeft16<8>(e), kr);
d = _mm_xor_si128(_mm_sub_epi16(t1, t2), counter);
h = _mm_xor_si128(_mm_sub_epi16(t3, t4), counter);
counter = _mm_sub_epi16(counter, decrement);
kr = _mm_shuffle_epi8(k, _mm_set_epi8(13,12,13,12, 13,12,13,12, 13,12,13,12, 13,12,13,12));
// Even round
t1 = RotateRight16<8>(c);
t3 = RotateRight16<8>(g);
t2 = _mm_xor_si128(RotateLeft16<1>(d), kr);
t4 = _mm_xor_si128(RotateLeft16<1>(h), kr);
c = _mm_xor_si128(_mm_sub_epi16(t1, t2), counter);
g = _mm_xor_si128(_mm_sub_epi16(t3, t4), counter);
counter = _mm_sub_epi16(counter, decrement);
kr = _mm_shuffle_epi8(k, _mm_set_epi8(11,10,11,10, 11,10,11,10, 11,10,11,10, 11,10,11,10));
// Odd round
t1 = RotateRight16<1>(b);
t3 = RotateRight16<1>(f);
t2 = _mm_xor_si128(RotateLeft16<8>(c), kr);
t4 = _mm_xor_si128(RotateLeft16<8>(g), kr);
b = _mm_xor_si128(_mm_sub_epi16(t1, t2), counter);
f = _mm_xor_si128(_mm_sub_epi16(t3, t4), counter);
counter = _mm_sub_epi16(counter, decrement);
kr = _mm_shuffle_epi8(k, _mm_set_epi8(9,8,9,8, 9,8,9,8, 9,8,9,8, 9,8,9,8));
// Even round
t1 = RotateRight16<8>(a);
t3 = RotateRight16<8>(e);
t2 = _mm_xor_si128(RotateLeft16<1>(b), kr);
t4 = _mm_xor_si128(RotateLeft16<1>(f), kr);
a = _mm_xor_si128(_mm_sub_epi16(t1, t2), counter);
e = _mm_xor_si128(_mm_sub_epi16(t3, t4), counter);
counter = _mm_sub_epi16(counter, decrement);
kr = _mm_shuffle_epi8(k, _mm_set_epi8(7,6,7,6, 7,6,7,6, 7,6,7,6, 7,6,7,6));
// Odd round
t1 = RotateRight16<1>(d);
t3 = RotateRight16<1>(h);
t2 = _mm_xor_si128(RotateLeft16<8>(a), kr);
t4 = _mm_xor_si128(RotateLeft16<8>(e), kr);
d = _mm_xor_si128(_mm_sub_epi16(t1, t2), counter);
h = _mm_xor_si128(_mm_sub_epi16(t3, t4), counter);
counter = _mm_sub_epi16(counter, decrement);
kr = _mm_shuffle_epi8(k, _mm_set_epi8(5,4,5,4, 5,4,5,4, 5,4,5,4, 5,4,5,4));
// Even round
t1 = RotateRight16<8>(c);
t3 = RotateRight16<8>(g);
t2 = _mm_xor_si128(RotateLeft16<1>(d), kr);
t4 = _mm_xor_si128(RotateLeft16<1>(h), kr);
c = _mm_xor_si128(_mm_sub_epi16(t1, t2), counter);
g = _mm_xor_si128(_mm_sub_epi16(t3, t4), counter);
counter = _mm_sub_epi16(counter, decrement);
kr = _mm_shuffle_epi8(k, _mm_set_epi8(3,2,3,2, 3,2,3,2, 3,2,3,2, 3,2,3,2));
// Odd round
t1 = RotateRight16<1>(b);
t3 = RotateRight16<1>(f);
t2 = _mm_xor_si128(RotateLeft16<8>(c), kr);
t4 = _mm_xor_si128(RotateLeft16<8>(g), kr);
b = _mm_xor_si128(_mm_sub_epi16(t1, t2), counter);
f = _mm_xor_si128(_mm_sub_epi16(t3, t4), counter);
counter = _mm_sub_epi16(counter, decrement);
kr = _mm_shuffle_epi8(k, _mm_set_epi8(1,0,1,0, 1,0,1,0, 1,0,1,0, 1,0,1,0));
// Even round
t1 = RotateRight16<8>(a);
t3 = RotateRight16<8>(e);
t2 = _mm_xor_si128(RotateLeft16<1>(b), kr);
t4 = _mm_xor_si128(RotateLeft16<1>(f), kr);
a = _mm_xor_si128(_mm_sub_epi16(t1, t2), counter);
e = _mm_xor_si128(_mm_sub_epi16(t3, t4), counter);
counter = _mm_sub_epi16(counter, decrement);
}
// [A1 B1 .. G1 H1][A2 B2 .. G2 H2] ... => [A1 A2 .. A6 A7][B1 B2 .. B6 B7] ...
block0 = RepackXMM<0>(a,b,c,d,e,f,g,h);
}
inline void GCC_NO_UBSAN CHAM64_Enc_2_Blocks(__m128i &block0,
__m128i &block1, const word16 *subkeys, unsigned int /*rounds*/)
{
// Rearrange the data for vectorization. UnpackXMM includes a
// little-endian swap for SSE. Thanks to Peter Cordes for help
// with packing and unpacking.
// [A1 A2 .. A6 A7][B1 B2 .. B6 B7] ... => [A1 B1 .. G1 H1][A2 B2 .. G2 H2] ...
__m128i a = UnpackXMM<0>(block0, block1);
__m128i b = UnpackXMM<1>(block0, block1);
__m128i c = UnpackXMM<2>(block0, block1);
__m128i d = UnpackXMM<3>(block0, block1);
__m128i e = UnpackXMM<4>(block0, block1);
__m128i f = UnpackXMM<5>(block0, block1);
__m128i g = UnpackXMM<6>(block0, block1);
__m128i h = UnpackXMM<7>(block0, block1);
const unsigned int rounds = 80;
__m128i counter = _mm_set_epi16(0,0,0,0,0,0,0,0);
__m128i increment = _mm_set_epi16(1,1,1,1,1,1,1,1);
const unsigned int MASK = 15;
for (int i=0; i<static_cast<int>(rounds); i+=8)
{
__m128i k, kr, t1, t2, t3, t4;
k = _mm_loadu_si128((const __m128i*) &subkeys[i & MASK]);
kr = _mm_shuffle_epi8(k, _mm_set_epi8(1,0,1,0, 1,0,1,0, 1,0,1,0, 1,0,1,0));
t1 = _mm_xor_si128(a, counter);
t3 = _mm_xor_si128(e, counter);
t2 = _mm_xor_si128(RotateLeft16<1>(b), kr);
t4 = _mm_xor_si128(RotateLeft16<1>(f), kr);
a = RotateLeft16<8>(_mm_add_epi16(t1, t2));
e = RotateLeft16<8>(_mm_add_epi16(t3, t4));
counter = _mm_add_epi16(counter, increment);
kr = _mm_shuffle_epi8(k, _mm_set_epi8(3,2,3,2, 3,2,3,2, 3,2,3,2, 3,2,3,2));
t1 = _mm_xor_si128(b, counter);
t3 = _mm_xor_si128(f, counter);
t2 = _mm_xor_si128(RotateLeft16<8>(c), kr);
t4 = _mm_xor_si128(RotateLeft16<8>(g), kr);
b = RotateLeft16<1>(_mm_add_epi16(t1, t2));
f = RotateLeft16<1>(_mm_add_epi16(t3, t4));
counter = _mm_add_epi16(counter, increment);
kr = _mm_shuffle_epi8(k, _mm_set_epi8(5,4,5,4, 5,4,5,4, 5,4,5,4, 5,4,5,4));
t1 = _mm_xor_si128(c, counter);
t3 = _mm_xor_si128(g, counter);
t2 = _mm_xor_si128(RotateLeft16<1>(d), kr);
t4 = _mm_xor_si128(RotateLeft16<1>(h), kr);
c = RotateLeft16<8>(_mm_add_epi16(t1, t2));
g = RotateLeft16<8>(_mm_add_epi16(t3, t4));
counter = _mm_add_epi16(counter, increment);
kr = _mm_shuffle_epi8(k, _mm_set_epi8(7,6,7,6, 7,6,7,6, 7,6,7,6, 7,6,7,6));
t1 = _mm_xor_si128(d, counter);
t3 = _mm_xor_si128(h, counter);
t2 = _mm_xor_si128(RotateLeft16<8>(a), kr);
t4 = _mm_xor_si128(RotateLeft16<8>(e), kr);
d = RotateLeft16<1>(_mm_add_epi16(t1, t2));
h = RotateLeft16<1>(_mm_add_epi16(t3, t4));
counter = _mm_add_epi16(counter, increment);
kr = _mm_shuffle_epi8(k, _mm_set_epi8(9,8,9,8, 9,8,9,8, 9,8,9,8, 9,8,9,8));
t1 = _mm_xor_si128(a, counter);
t3 = _mm_xor_si128(e, counter);
t2 = _mm_xor_si128(RotateLeft16<1>(b), kr);
t4 = _mm_xor_si128(RotateLeft16<1>(f), kr);
a = RotateLeft16<8>(_mm_add_epi16(t1, t2));
e = RotateLeft16<8>(_mm_add_epi16(t3, t4));
counter = _mm_add_epi16(counter, increment);
kr = _mm_shuffle_epi8(k, _mm_set_epi8(11,10,11,10, 11,10,11,10, 11,10,11,10, 11,10,11,10));
t1 = _mm_xor_si128(b, counter);
t3 = _mm_xor_si128(f, counter);
t2 = _mm_xor_si128(RotateLeft16<8>(c), kr);
t4 = _mm_xor_si128(RotateLeft16<8>(g), kr);
b = RotateLeft16<1>(_mm_add_epi16(t1, t2));
f = RotateLeft16<1>(_mm_add_epi16(t3, t4));
counter = _mm_add_epi16(counter, increment);
kr = _mm_shuffle_epi8(k, _mm_set_epi8(13,12,13,12, 13,12,13,12, 13,12,13,12, 13,12,13,12));
t1 = _mm_xor_si128(c, counter);
t3 = _mm_xor_si128(g, counter);
t2 = _mm_xor_si128(RotateLeft16<1>(d), kr);
t4 = _mm_xor_si128(RotateLeft16<1>(h), kr);
c = RotateLeft16<8>(_mm_add_epi16(t1, t2));
g = RotateLeft16<8>(_mm_add_epi16(t3, t4));
counter = _mm_add_epi16(counter, increment);
kr = _mm_shuffle_epi8(k, _mm_set_epi8(15,14,15,14, 15,14,15,14, 15,14,15,14, 15,14,15,14));
t1 = _mm_xor_si128(d, counter);
t3 = _mm_xor_si128(h, counter);
t2 = _mm_xor_si128(RotateLeft16<8>(a), kr);
t4 = _mm_xor_si128(RotateLeft16<8>(e), kr);
d = RotateLeft16<1>(_mm_add_epi16(t1, t2));
h = RotateLeft16<1>(_mm_add_epi16(t3, t4));
counter = _mm_add_epi16(counter, increment);
}
// [A1 B1 .. G1 H1][A2 B2 .. G2 H2] ... => [A1 A2 .. A6 A7][B1 B2 .. B6 B7] ...
block0 = RepackXMM<0>(a,b,c,d,e,f,g,h);
block1 = RepackXMM<1>(a,b,c,d,e,f,g,h);
}
inline void GCC_NO_UBSAN CHAM64_Dec_2_Blocks(__m128i &block0,
__m128i &block1, const word16 *subkeys, unsigned int /*rounds*/)
{
// Rearrange the data for vectorization. UnpackXMM includes a
// little-endian swap for SSE. Thanks to Peter Cordes for help
// with packing and unpacking.
// [A1 A2 .. A6 A7][B1 B2 .. B6 B7] ... => [A1 B1 .. G1 H1][A2 B2 .. G2 H2] ...
__m128i a = UnpackXMM<0>(block0, block1);
__m128i b = UnpackXMM<1>(block0, block1);
__m128i c = UnpackXMM<2>(block0, block1);
__m128i d = UnpackXMM<3>(block0, block1);
__m128i e = UnpackXMM<4>(block0, block1);
__m128i f = UnpackXMM<5>(block0, block1);
__m128i g = UnpackXMM<6>(block0, block1);
__m128i h = UnpackXMM<7>(block0, block1);
const unsigned int rounds = 80;
__m128i counter = _mm_set_epi16(rounds-1,rounds-1,rounds-1,rounds-1, rounds-1,rounds-1,rounds-1,rounds-1);
__m128i decrement = _mm_set_epi16(1,1,1,1,1,1,1,1);
const unsigned int MASK = 15;
for (int i = static_cast<int>(rounds)-1; i >= 0; i-=8)
{
__m128i k, kr, t1, t2, t3, t4;
k = _mm_loadu_si128((const __m128i*) &subkeys[(i-7) & MASK]);
kr = _mm_shuffle_epi8(k, _mm_set_epi8(15,14,15,14, 15,14,15,14, 15,14,15,14, 15,14,15,14));
// Odd round
t1 = RotateRight16<1>(d);
t3 = RotateRight16<1>(h);
t2 = _mm_xor_si128(RotateLeft16<8>(a), kr);
t4 = _mm_xor_si128(RotateLeft16<8>(e), kr);
d = _mm_xor_si128(_mm_sub_epi16(t1, t2), counter);
h = _mm_xor_si128(_mm_sub_epi16(t3, t4), counter);
counter = _mm_sub_epi16(counter, decrement);
kr = _mm_shuffle_epi8(k, _mm_set_epi8(13,12,13,12, 13,12,13,12, 13,12,13,12, 13,12,13,12));
// Even round
t1 = RotateRight16<8>(c);
t3 = RotateRight16<8>(g);
t2 = _mm_xor_si128(RotateLeft16<1>(d), kr);
t4 = _mm_xor_si128(RotateLeft16<1>(h), kr);
c = _mm_xor_si128(_mm_sub_epi16(t1, t2), counter);
g = _mm_xor_si128(_mm_sub_epi16(t3, t4), counter);
counter = _mm_sub_epi16(counter, decrement);
kr = _mm_shuffle_epi8(k, _mm_set_epi8(11,10,11,10, 11,10,11,10, 11,10,11,10, 11,10,11,10));
// Odd round
t1 = RotateRight16<1>(b);
t3 = RotateRight16<1>(f);
t2 = _mm_xor_si128(RotateLeft16<8>(c), kr);
t4 = _mm_xor_si128(RotateLeft16<8>(g), kr);
b = _mm_xor_si128(_mm_sub_epi16(t1, t2), counter);
f = _mm_xor_si128(_mm_sub_epi16(t3, t4), counter);
counter = _mm_sub_epi16(counter, decrement);
kr = _mm_shuffle_epi8(k, _mm_set_epi8(9,8,9,8, 9,8,9,8, 9,8,9,8, 9,8,9,8));
// Even round
t1 = RotateRight16<8>(a);
t3 = RotateRight16<8>(e);
t2 = _mm_xor_si128(RotateLeft16<1>(b), kr);
t4 = _mm_xor_si128(RotateLeft16<1>(f), kr);
a = _mm_xor_si128(_mm_sub_epi16(t1, t2), counter);
e = _mm_xor_si128(_mm_sub_epi16(t3, t4), counter);
counter = _mm_sub_epi16(counter, decrement);
kr = _mm_shuffle_epi8(k, _mm_set_epi8(7,6,7,6, 7,6,7,6, 7,6,7,6, 7,6,7,6));
// Odd round
t1 = RotateRight16<1>(d);
t3 = RotateRight16<1>(h);
t2 = _mm_xor_si128(RotateLeft16<8>(a), kr);
t4 = _mm_xor_si128(RotateLeft16<8>(e), kr);
d = _mm_xor_si128(_mm_sub_epi16(t1, t2), counter);
h = _mm_xor_si128(_mm_sub_epi16(t3, t4), counter);
counter = _mm_sub_epi16(counter, decrement);
kr = _mm_shuffle_epi8(k, _mm_set_epi8(5,4,5,4, 5,4,5,4, 5,4,5,4, 5,4,5,4));
// Even round
t1 = RotateRight16<8>(c);
t3 = RotateRight16<8>(g);
t2 = _mm_xor_si128(RotateLeft16<1>(d), kr);
t4 = _mm_xor_si128(RotateLeft16<1>(h), kr);
c = _mm_xor_si128(_mm_sub_epi16(t1, t2), counter);
g = _mm_xor_si128(_mm_sub_epi16(t3, t4), counter);
counter = _mm_sub_epi16(counter, decrement);
kr = _mm_shuffle_epi8(k, _mm_set_epi8(3,2,3,2, 3,2,3,2, 3,2,3,2, 3,2,3,2));
// Odd round
t1 = RotateRight16<1>(b);
t3 = RotateRight16<1>(f);
t2 = _mm_xor_si128(RotateLeft16<8>(c), kr);
t4 = _mm_xor_si128(RotateLeft16<8>(g), kr);
b = _mm_xor_si128(_mm_sub_epi16(t1, t2), counter);
f = _mm_xor_si128(_mm_sub_epi16(t3, t4), counter);
counter = _mm_sub_epi16(counter, decrement);
kr = _mm_shuffle_epi8(k, _mm_set_epi8(1,0,1,0, 1,0,1,0, 1,0,1,0, 1,0,1,0));
// Even round
t1 = RotateRight16<8>(a);
t3 = RotateRight16<8>(e);
t2 = _mm_xor_si128(RotateLeft16<1>(b), kr);
t4 = _mm_xor_si128(RotateLeft16<1>(f), kr);
a = _mm_xor_si128(_mm_sub_epi16(t1, t2), counter);
e = _mm_xor_si128(_mm_sub_epi16(t3, t4), counter);
counter = _mm_sub_epi16(counter, decrement);
}
// [A1 B1 .. G1 H1][A2 B2 .. G2 H2] ... => [A1 A2 .. A6 A7][B1 B2 .. B6 B7] ...
block0 = RepackXMM<0>(a,b,c,d,e,f,g,h);
block1 = RepackXMM<1>(a,b,c,d,e,f,g,h);
}
NAMESPACE_END // W16
//////////////////////////////////////////////////////////////////////////
NAMESPACE_BEGIN(W32) // CHAM128, 32-bit word size
template <unsigned int R>
inline __m128i RotateLeft32(const __m128i& val)
{
@ -408,24 +1152,42 @@ inline void GCC_NO_UBSAN CHAM128_Dec_4_Blocks(__m128i &block0, __m128i &block1,
block3 = RepackXMM<3>(a,b,c,d);
}
#endif
//////////////////////////////////////////////////////////////////////////
NAMESPACE_END // W32
#endif // CRYPTOPP_SSSE3_AVAILABLE
ANONYMOUS_NAMESPACE_END
NAMESPACE_BEGIN(CryptoPP)
#if defined(CRYPTOPP_SSSE3_AVAILABLE)
size_t CHAM64_Enc_AdvancedProcessBlocks_SSSE3(const word16* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return AdvancedProcessBlocks64_2x1_SSE(W16::CHAM64_Enc_Block, W16::CHAM64_Enc_2_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
size_t CHAM64_Dec_AdvancedProcessBlocks_SSSE3(const word16* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return AdvancedProcessBlocks64_2x1_SSE(W16::CHAM64_Dec_Block, W16::CHAM64_Dec_2_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
size_t CHAM128_Enc_AdvancedProcessBlocks_SSSE3(const word32* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return AdvancedProcessBlocks128_4x1_SSE(CHAM128_Enc_Block, CHAM128_Enc_4_Blocks,
return AdvancedProcessBlocks128_4x1_SSE(W32::CHAM128_Enc_Block, W32::CHAM128_Enc_4_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
size_t CHAM128_Dec_AdvancedProcessBlocks_SSSE3(const word32* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return AdvancedProcessBlocks128_4x1_SSE(CHAM128_Dec_Block, CHAM128_Dec_4_Blocks,
return AdvancedProcessBlocks128_4x1_SSE(W32::CHAM128_Dec_Block, W32::CHAM128_Dec_4_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
#endif // CRYPTOPP_SSSE3_AVAILABLE

View File

@ -96,7 +96,13 @@ ANONYMOUS_NAMESPACE_END
NAMESPACE_BEGIN(CryptoPP)
#if CRYPTOPP_CHAM128_ADVANCED_PROCESS_BLOCKS
#if CRYPTOPP_CHAM_ADVANCED_PROCESS_BLOCKS
extern size_t CHAM64_Enc_AdvancedProcessBlocks_SSSE3(const word16* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags);
extern size_t CHAM64_Dec_AdvancedProcessBlocks_SSSE3(const word16* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags);
extern size_t CHAM128_Enc_AdvancedProcessBlocks_SSSE3(const word32* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags);
@ -308,7 +314,27 @@ void CHAM128::Dec::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock,
oblock(m_x[0])(m_x[1])(m_x[2])(m_x[3]);
}
#if CRYPTOPP_CHAM128_ADVANCED_PROCESS_BLOCKS
#if CRYPTOPP_CHAM_ADVANCED_PROCESS_BLOCKS
size_t CHAM64::Enc::AdvancedProcessBlocks(const byte *inBlocks, const byte *xorBlocks,
byte *outBlocks, size_t length, word32 flags) const
{
if (HasSSSE3()) {
return CHAM64_Enc_AdvancedProcessBlocks_SSSE3(m_rk, 80,
inBlocks, xorBlocks, outBlocks, length, flags);
}
return BlockTransformation::AdvancedProcessBlocks(inBlocks, xorBlocks, outBlocks, length, flags);
}
size_t CHAM64::Dec::AdvancedProcessBlocks(const byte *inBlocks, const byte *xorBlocks,
byte *outBlocks, size_t length, word32 flags) const
{
if (HasSSSE3()) {
return CHAM64_Dec_AdvancedProcessBlocks_SSSE3(m_rk, 80,
inBlocks, xorBlocks, outBlocks, length, flags);
}
return BlockTransformation::AdvancedProcessBlocks(inBlocks, xorBlocks, outBlocks, length, flags);
}
size_t CHAM128::Enc::AdvancedProcessBlocks(const byte *inBlocks, const byte *xorBlocks,
byte *outBlocks, size_t length, word32 flags) const
{
@ -330,6 +356,6 @@ size_t CHAM128::Dec::AdvancedProcessBlocks(const byte *inBlocks, const byte *xor
}
return BlockTransformation::AdvancedProcessBlocks(inBlocks, xorBlocks, outBlocks, length, flags);
}
#endif // CRYPTOPP_CHAM128_ADVANCED_PROCESS_BLOCKS
#endif // CRYPTOPP_CHAM_ADVANCED_PROCESS_BLOCKS
NAMESPACE_END

14
cham.h
View File

@ -16,7 +16,7 @@
#include "algparam.h"
#if (CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X86)
# define CRYPTOPP_CHAM128_ADVANCED_PROCESS_BLOCKS 1
# define CRYPTOPP_CHAM_ADVANCED_PROCESS_BLOCKS 1
#endif
NAMESPACE_BEGIN(CryptoPP)
@ -74,6 +74,10 @@ public:
{
public:
void ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const;
#if CRYPTOPP_CHAM_ADVANCED_PROCESS_BLOCKS
size_t AdvancedProcessBlocks(const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) const;
#endif
};
/// \brief Provides implementation for encryption transformation
@ -84,6 +88,10 @@ public:
{
public:
void ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const;
#if CRYPTOPP_CHAM_ADVANCED_PROCESS_BLOCKS
size_t AdvancedProcessBlocks(const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) const;
#endif
};
typedef BlockCipherFinal<ENCRYPTION, Enc> Encryption;
@ -125,7 +133,7 @@ public:
public:
void ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const;
#if CRYPTOPP_CHAM128_ADVANCED_PROCESS_BLOCKS
#if CRYPTOPP_CHAM_ADVANCED_PROCESS_BLOCKS
size_t AdvancedProcessBlocks(const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) const;
#endif
};
@ -139,7 +147,7 @@ public:
public:
void ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const;
#if CRYPTOPP_CHAM128_ADVANCED_PROCESS_BLOCKS
#if CRYPTOPP_CHAM_ADVANCED_PROCESS_BLOCKS
size_t AdvancedProcessBlocks(const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) const;
#endif
};