Updated documentation
parent
34a34967ac
commit
caea6f1c59
190
algebra.h
190
algebra.h
|
|
@ -1,7 +1,6 @@
|
|||
// algebra.h - written and placed in the public domain by Wei Dai
|
||||
|
||||
//! \file
|
||||
//! \headerfile algebra.h
|
||||
//! \file algebra.h
|
||||
//! \brief Classes for performing mathematics over different fields
|
||||
|
||||
#ifndef CRYPTOPP_ALGEBRA_H
|
||||
|
|
@ -15,15 +14,15 @@ NAMESPACE_BEGIN(CryptoPP)
|
|||
|
||||
class Integer;
|
||||
|
||||
// "const Element&" returned by member functions are references
|
||||
// to internal data members. Since each object may have only
|
||||
// one such data member for holding results, the following code
|
||||
// will produce incorrect results:
|
||||
// abcd = group.Add(group.Add(a,b), group.Add(c,d));
|
||||
// But this should be fine:
|
||||
// abcd = group.Add(a, group.Add(b, group.Add(c,d));
|
||||
|
||||
//! Abstract Group
|
||||
//! \brief Abstract group
|
||||
//! \tparam T element class or type
|
||||
//! \details <tt>const Element&</tt> returned by member functions are references
|
||||
//! to internal data members. Since each object may have only
|
||||
//! one such data member for holding results, the following code
|
||||
//! will produce incorrect results:
|
||||
//! <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre>
|
||||
//! But this should be fine:
|
||||
//! <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre>
|
||||
template <class T> class CRYPTOPP_NO_VTABLE AbstractGroup
|
||||
{
|
||||
public:
|
||||
|
|
@ -31,48 +30,167 @@ public:
|
|||
|
||||
virtual ~AbstractGroup() {}
|
||||
|
||||
//! \brief Compare two elements for equality
|
||||
//! \param a first element
|
||||
//! \param b second element
|
||||
//! \returns true if the elements are equal, false otherwise
|
||||
//! \details Equal() tests the elements for equality using <tt>a==b</tt>
|
||||
virtual bool Equal(const Element &a, const Element &b) const =0;
|
||||
|
||||
//! \brief Provides the Identity element
|
||||
//! \returns the Identity element
|
||||
virtual const Element& Identity() const =0;
|
||||
|
||||
//! \brief Adds elements in the group
|
||||
//! \param a first element
|
||||
//! \param b second element
|
||||
//! \returns the sum of <tt>a</tt> and <tt>b</tt>
|
||||
virtual const Element& Add(const Element &a, const Element &b) const =0;
|
||||
|
||||
//! \brief Inverts the element in the group
|
||||
//! \param a first element
|
||||
//! \returns the inverse of the element
|
||||
virtual const Element& Inverse(const Element &a) const =0;
|
||||
|
||||
//! \brief Determine if inversion is fast
|
||||
//! \returns true if inversion is fast, false otherwise
|
||||
virtual bool InversionIsFast() const {return false;}
|
||||
|
||||
//! \brief Doubles an element in the group
|
||||
//! \param a the element
|
||||
//! \returns the element doubled
|
||||
virtual const Element& Double(const Element &a) const;
|
||||
|
||||
//! \brief Subtracts elements in the group
|
||||
//! \param a first element
|
||||
//! \param b second element
|
||||
//! \returns the difference of <tt>a</tt> and <tt>b</tt>. The element <tt>a</tt> must provide a Subtract member function.
|
||||
virtual const Element& Subtract(const Element &a, const Element &b) const;
|
||||
|
||||
//! \brief TODO
|
||||
//! \param a first element
|
||||
//! \param b second element
|
||||
//! \returns TODO
|
||||
virtual Element& Accumulate(Element &a, const Element &b) const;
|
||||
|
||||
//! \brief Reduces an element in the congruence class
|
||||
//! \param a element to reduce
|
||||
//! \param b the congruence class
|
||||
//! \returns the reduced element
|
||||
virtual Element& Reduce(Element &a, const Element &b) const;
|
||||
|
||||
//! \brief Performs a scalar multiplication
|
||||
//! \param a multiplicand
|
||||
//! \param e multiplier
|
||||
//! \returns the product
|
||||
virtual Element ScalarMultiply(const Element &a, const Integer &e) const;
|
||||
|
||||
//! \brief TODO
|
||||
//! \param x first multiplicand
|
||||
//! \param e1 the first multiplier
|
||||
//! \param y second multiplicand
|
||||
//! \param e2 the second multiplier
|
||||
//! \returns TODO
|
||||
virtual Element CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const;
|
||||
|
||||
//! \brief Multiplies a base to multiple exponents in a group
|
||||
//! \param results an array of Elements
|
||||
//! \param base the base to raise to the exponents
|
||||
//! \param exponents an array of exponents
|
||||
//! \param exponentsCount the number of exponents in the array
|
||||
//! \details SimultaneousMultiply() multiplies the base to each exponent in the exponents array and stores the
|
||||
//! result at the respective position in the results array.
|
||||
//! \details SimultaneousMultiply() must be implemented in a derived class.
|
||||
//! \pre <tt>COUNTOF(results) == exponentsCount</tt>
|
||||
//! \pre <tt>COUNTOF(exponents) == exponentsCount</tt>
|
||||
virtual void SimultaneousMultiply(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
|
||||
};
|
||||
|
||||
//! Abstract Ring
|
||||
//! \brief Abstract ring
|
||||
//! \tparam T element class or type
|
||||
//! \details <tt>const Element&</tt> returned by member functions are references
|
||||
//! to internal data members. Since each object may have only
|
||||
//! one such data member for holding results, the following code
|
||||
//! will produce incorrect results:
|
||||
//! <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre>
|
||||
//! But this should be fine:
|
||||
//! <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre>
|
||||
template <class T> class CRYPTOPP_NO_VTABLE AbstractRing : public AbstractGroup<T>
|
||||
{
|
||||
public:
|
||||
typedef T Element;
|
||||
|
||||
//! \brief Construct an AbstractRing
|
||||
AbstractRing() {m_mg.m_pRing = this;}
|
||||
|
||||
//! \brief Copy construct an AbstractRing
|
||||
//! \param source other AbstractRing
|
||||
AbstractRing(const AbstractRing &source)
|
||||
{CRYPTOPP_UNUSED(source); m_mg.m_pRing = this;}
|
||||
|
||||
//! \brief Assign an AbstractRing
|
||||
//! \param source other AbstractRing
|
||||
AbstractRing& operator=(const AbstractRing &source)
|
||||
{CRYPTOPP_UNUSED(source); return *this;}
|
||||
|
||||
//! \brief Determines whether an element is a unit in the group
|
||||
//! \param a the element
|
||||
//! \returns true if the element is a unit after reduction, false otherwise.
|
||||
virtual bool IsUnit(const Element &a) const =0;
|
||||
|
||||
//! \brief Retrieves the multiplicative identity
|
||||
//! \returns the multiplicative identity
|
||||
virtual const Element& MultiplicativeIdentity() const =0;
|
||||
|
||||
//! \brief Multiplies elements in the group
|
||||
//! \param a the multiplicand
|
||||
//! \param b the multiplier
|
||||
//! \returns the product of a and b
|
||||
virtual const Element& Multiply(const Element &a, const Element &b) const =0;
|
||||
|
||||
//! \brief Calculate the multiplicative inverse of an element in the group
|
||||
//! \param a the element
|
||||
virtual const Element& MultiplicativeInverse(const Element &a) const =0;
|
||||
|
||||
//! \brief Square an element in the group
|
||||
//! \param a the element
|
||||
//! \returns the element squared
|
||||
virtual const Element& Square(const Element &a) const;
|
||||
|
||||
//! \brief Divides elements in the group
|
||||
//! \param a the dividend
|
||||
//! \param b the divisor
|
||||
//! \returns the quotient
|
||||
virtual const Element& Divide(const Element &a, const Element &b) const;
|
||||
|
||||
//! \brief Raises a base to an exponent in the group
|
||||
//! \param a the base
|
||||
//! \param e the exponent
|
||||
//! \returns the exponentiation
|
||||
virtual Element Exponentiate(const Element &a, const Integer &e) const;
|
||||
|
||||
//! \brief TODO
|
||||
//! \param x first element
|
||||
//! \param e1 first exponent
|
||||
//! \param y second element
|
||||
//! \param e2 second exponent
|
||||
//! \returns TODO
|
||||
virtual Element CascadeExponentiate(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const;
|
||||
|
||||
//! \brief Exponentiates a base to multiple exponents in the Ring
|
||||
//! \param results an array of Elements
|
||||
//! \param base the base to raise to the exponents
|
||||
//! \param exponents an array of exponents
|
||||
//! \param exponentsCount the number of exponents in the array
|
||||
//! \details SimultaneousExponentiate() raises the base to each exponent in the exponents array and stores the
|
||||
//! result at the respective position in the results array.
|
||||
//! \details SimultaneousExponentiate() must be implemented in a derived class.
|
||||
//! \pre <tt>COUNTOF(results) == exponentsCount</tt>
|
||||
//! \pre <tt>COUNTOF(exponents) == exponentsCount</tt>
|
||||
virtual void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
|
||||
|
||||
//! \brief Retrieves the multiplicative group
|
||||
//! \returns the multiplicative group
|
||||
virtual const AbstractGroup<T>& MultiplicativeGroup() const
|
||||
{return m_mg;}
|
||||
|
||||
|
|
@ -124,7 +242,9 @@ private:
|
|||
|
||||
// ********************************************************
|
||||
|
||||
//! Base and Exponent
|
||||
//! \brief Base and exponent
|
||||
//! \tparam T base class or type
|
||||
//! \tparam T exponent class or type
|
||||
template <class T, class E = Integer>
|
||||
struct BaseAndExponent
|
||||
{
|
||||
|
|
@ -144,15 +264,37 @@ template <class Element, class Iterator>
|
|||
|
||||
// ********************************************************
|
||||
|
||||
//! Abstract Euclidean Domain
|
||||
//! \brief Abstract Euclidean domain
|
||||
//! \tparam T element class or type
|
||||
//! \details <tt>const Element&</tt> returned by member functions are references
|
||||
//! to internal data members. Since each object may have only
|
||||
//! one such data member for holding results, the following code
|
||||
//! will produce incorrect results:
|
||||
//! <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre>
|
||||
//! But this should be fine:
|
||||
//! <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre>
|
||||
template <class T> class CRYPTOPP_NO_VTABLE AbstractEuclideanDomain : public AbstractRing<T>
|
||||
{
|
||||
public:
|
||||
typedef T Element;
|
||||
|
||||
//! \brief Performs the division algorithm on two elements in the ring
|
||||
//! \param r the remainder
|
||||
//! \param q the quotient
|
||||
//! \param a the dividend
|
||||
//! \param d the divisor
|
||||
virtual void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const =0;
|
||||
|
||||
//! \brief Performs a modular reduction in the ring
|
||||
//! \param a the element
|
||||
//! \param b the modulus
|
||||
//! \returns the result of <tt>a%b</tt>.
|
||||
virtual const Element& Mod(const Element &a, const Element &b) const =0;
|
||||
|
||||
//! \brief Calculates the greatest common denominator in the ring
|
||||
//! \param a the first element
|
||||
//! \param b the second element
|
||||
//! \returns the the greatest common denominator of a and b.
|
||||
virtual const Element& Gcd(const Element &a, const Element &b) const;
|
||||
|
||||
protected:
|
||||
|
|
@ -161,7 +303,15 @@ protected:
|
|||
|
||||
// ********************************************************
|
||||
|
||||
//! EuclideanDomainOf
|
||||
//! \brief Euclidean domain
|
||||
//! \tparam T element class or type
|
||||
//! \details <tt>const Element&</tt> returned by member functions are references
|
||||
//! to internal data members. Since each object may have only
|
||||
//! one such data member for holding results, the following code
|
||||
//! will produce incorrect results:
|
||||
//! <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre>
|
||||
//! But this should be fine:
|
||||
//! <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre>
|
||||
template <class T> class EuclideanDomainOf : public AbstractEuclideanDomain<T>
|
||||
{
|
||||
public:
|
||||
|
|
@ -224,7 +374,15 @@ private:
|
|||
mutable Element result;
|
||||
};
|
||||
|
||||
//! Quotient Ring
|
||||
//! \brief Quotient ring
|
||||
//! \tparam T element class or type
|
||||
//! \details <tt>const Element&</tt> returned by member functions are references
|
||||
//! to internal data members. Since each object may have only
|
||||
//! one such data member for holding results, the following code
|
||||
//! will produce incorrect results:
|
||||
//! <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre>
|
||||
//! But this should be fine:
|
||||
//! <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre>
|
||||
template <class T> class QuotientRing : public AbstractRing<typename T::Element>
|
||||
{
|
||||
public:
|
||||
|
|
|
|||
54
modarith.h
54
modarith.h
|
|
@ -24,10 +24,13 @@ CRYPTOPP_DLL_TEMPLATE_CLASS AbstractEuclideanDomain<Integer>;
|
|||
//! \brief Ring of congruence classes modulo n
|
||||
//! \details This implementation represents each congruence class as the smallest
|
||||
//! non-negative integer in that class.
|
||||
//! \details Each instance of the class provides two temporary elements to
|
||||
//! preserve intermediate calculations for future use. For example,
|
||||
//! \ref ModularArithmetic::Multiply "Multiply" saves its last result in member
|
||||
//! variable <tt>m_result1</tt>.
|
||||
//! \details <tt>const Element&</tt> returned by member functions are references
|
||||
//! to internal data members. Since each object may have only
|
||||
//! one such data member for holding results, the following code
|
||||
//! will produce incorrect results:
|
||||
//! <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre>
|
||||
//! But this should be fine:
|
||||
//! <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre>
|
||||
class CRYPTOPP_DLL ModularArithmetic : public AbstractRing<Integer>
|
||||
{
|
||||
public:
|
||||
|
|
@ -119,7 +122,7 @@ public:
|
|||
const Integer& Identity() const
|
||||
{return Integer::Zero();}
|
||||
|
||||
//! \brief Adds elements in the Ring
|
||||
//! \brief Adds elements in the ring
|
||||
//! \param a first element
|
||||
//! \param b second element
|
||||
//! \returns the sum of <tt>a</tt> and <tt>b</tt>
|
||||
|
|
@ -131,12 +134,12 @@ public:
|
|||
//! \returns TODO
|
||||
Integer& Accumulate(Integer &a, const Integer &b) const;
|
||||
|
||||
//! \brief Inverts the element in the Ring
|
||||
//! \brief Inverts the element in the ring
|
||||
//! \param a first element
|
||||
//! \returns the inverse of the element
|
||||
const Integer& Inverse(const Integer &a) const;
|
||||
|
||||
//! \brief Subtracts elements in the Ring
|
||||
//! \brief Subtracts elements in the ring
|
||||
//! \param a first element
|
||||
//! \param b second element
|
||||
//! \returns the difference of <tt>a</tt> and <tt>b</tt>. The element <tt>a</tt> must provide a Subtract member function.
|
||||
|
|
@ -148,7 +151,7 @@ public:
|
|||
//! \returns TODO
|
||||
Integer& Reduce(Integer &a, const Integer &b) const;
|
||||
|
||||
//! \brief Doubles an element in the Ring
|
||||
//! \brief Doubles an element in the ring
|
||||
//! \param a the element
|
||||
//! \returns the element doubled
|
||||
//! \details Double returns <tt>Add(a, a)</tt>. The element <tt>a</tt> must provide an Add member function.
|
||||
|
|
@ -161,38 +164,38 @@ public:
|
|||
const Integer& MultiplicativeIdentity() const
|
||||
{return Integer::One();}
|
||||
|
||||
//! \brief Multiplies elements in the Ring
|
||||
//! \param a first element
|
||||
//! \param b second element
|
||||
//! \brief Multiplies elements in the ring
|
||||
//! \param a the multiplicand
|
||||
//! \param b the multiplier
|
||||
//! \returns the product of a and b
|
||||
//! \details Multiply returns <tt>a*b\%n</tt>.
|
||||
const Integer& Multiply(const Integer &a, const Integer &b) const
|
||||
{return m_result1 = a*b%m_modulus;}
|
||||
|
||||
//! \brief Square an element in the Ring
|
||||
//! \brief Square an element in the ring
|
||||
//! \param a the element
|
||||
//! \returns the element squared
|
||||
//! \details Square returns <tt>a*a\%n</tt>. The element <tt>a</tt> must provide a Square member function.
|
||||
const Integer& Square(const Integer &a) const
|
||||
{return m_result1 = a.Squared()%m_modulus;}
|
||||
|
||||
//! \brief Determines whether an element is a unit in the Ring
|
||||
//! \brief Determines whether an element is a unit in the ring
|
||||
//! \param a the element
|
||||
//! \returns true if the element is a unit after reduction, false otherwise.
|
||||
bool IsUnit(const Integer &a) const
|
||||
{return Integer::Gcd(a, m_modulus).IsUnit();}
|
||||
|
||||
//! \brief Calculate the multiplicative inverse of an element in the Ring
|
||||
//! \brief Calculate the multiplicative inverse of an element in the ring
|
||||
//! \param a the element
|
||||
//! \details MultiplicativeInverse returns <tt>a<sup>-1</sup>\%n</tt>. The element <tt>a</tt> must
|
||||
//! provide a InverseMod member function.
|
||||
const Integer& MultiplicativeInverse(const Integer &a) const
|
||||
{return m_result1 = a.InverseMod(m_modulus);}
|
||||
|
||||
//! \brief Divides elements in the Ring
|
||||
//! \param a first element
|
||||
//! \param b second element
|
||||
//! \returns the element squared
|
||||
//! \brief Divides elements in the ring
|
||||
//! \param a the dividend
|
||||
//! \param b the divisor
|
||||
//! \returns the quotient
|
||||
//! \details Divide returns <tt>a*b<sup>-1</sup>\%n</tt>.
|
||||
const Integer& Divide(const Integer &a, const Integer &b) const
|
||||
{return Multiply(a, MultiplicativeInverse(b));}
|
||||
|
|
@ -205,7 +208,7 @@ public:
|
|||
//! \returns TODO
|
||||
Integer CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const;
|
||||
|
||||
//! \brief Exponentiates a base to multiple exponents in the Ring
|
||||
//! \brief Exponentiates a base to multiple exponents in the ring
|
||||
//! \param results an array of Elements
|
||||
//! \param base the base to raise to the exponents
|
||||
//! \param exponents an array of exponents
|
||||
|
|
@ -217,17 +220,17 @@ public:
|
|||
//! \pre <tt>COUNTOF(exponents) == exponentsCount</tt>
|
||||
void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
|
||||
|
||||
//! \brief Provides the maximum bit size of an element in the Ring
|
||||
//! \brief Provides the maximum bit size of an element in the ring
|
||||
//! \returns maximum bit size of an element
|
||||
unsigned int MaxElementBitLength() const
|
||||
{return (m_modulus-1).BitCount();}
|
||||
|
||||
//! \brief Provides the maximum byte size of an element in the Ring
|
||||
//! \brief Provides the maximum byte size of an element in the ring
|
||||
//! \returns maximum byte size of an element
|
||||
unsigned int MaxElementByteLength() const
|
||||
{return (m_modulus-1).ByteCount();}
|
||||
|
||||
//! \brief Provides a random element in the Ring
|
||||
//! \brief Provides a random element in the ring
|
||||
//! \param rng RandomNumberGenerator used to generate material
|
||||
//! \param ignore_for_now unused
|
||||
//! \returns a random element that is uniformly distributed
|
||||
|
|
@ -261,6 +264,13 @@ protected:
|
|||
//! \brief Performs modular arithmetic in Montgomery representation for increased speed
|
||||
//! \details The Montgomery representation represents each congruence class <tt>[a]</tt> as
|
||||
//! <tt>a*r\%n</tt>, where <tt>r</tt> is a convenient power of 2.
|
||||
//! \details <tt>const Element&</tt> returned by member functions are references
|
||||
//! to internal data members. Since each object may have only
|
||||
//! one such data member for holding results, the following code
|
||||
//! will produce incorrect results:
|
||||
//! <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre>
|
||||
//! But this should be fine:
|
||||
//! <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre>
|
||||
class CRYPTOPP_DLL MontgomeryRepresentation : public ModularArithmetic
|
||||
{
|
||||
public:
|
||||
|
|
|
|||
|
|
@ -32,6 +32,7 @@ public:
|
|||
//! \brief Derive key from the password
|
||||
//! \param derived the byte buffer to receive the derived password
|
||||
//! \param derivedLen the size of the byte buffer to receive the derived password
|
||||
//! \param purpose an octet indicating the purpose of the derivation
|
||||
//! \param password the byte buffer with the password
|
||||
//! \param passwordLen the size of the password, in bytes
|
||||
//! \param salt the byte buffer with the salt
|
||||
|
|
|
|||
Loading…
Reference in New Issue