Add Rabin-Williams signatures using Bernstein's tweaked roots. Improve documentation
parent
c1b692af13
commit
de01e0fdfc
126
rw.cpp
126
rw.cpp
|
|
@ -7,9 +7,12 @@
|
||||||
#include "integer.h"
|
#include "integer.h"
|
||||||
#include "nbtheory.h"
|
#include "nbtheory.h"
|
||||||
#include "modarith.h"
|
#include "modarith.h"
|
||||||
|
#include "asn.h"
|
||||||
|
|
||||||
#ifndef CRYPTOPP_IMPORTS
|
#ifndef CRYPTOPP_IMPORTS
|
||||||
|
|
||||||
|
static const bool CRYPTOPP_RW_USE_OMP = false;
|
||||||
|
|
||||||
NAMESPACE_BEGIN(CryptoPP)
|
NAMESPACE_BEGIN(CryptoPP)
|
||||||
|
|
||||||
void RWFunction::BERDecode(BufferedTransformation &bt)
|
void RWFunction::BERDecode(BufferedTransformation &bt)
|
||||||
|
|
@ -103,6 +106,55 @@ void InvertibleRWFunction::GenerateRandom(RandomNumberGenerator &rng, const Name
|
||||||
|
|
||||||
m_n = m_p * m_q;
|
m_n = m_p * m_q;
|
||||||
m_u = m_q.InverseMod(m_p);
|
m_u = m_q.InverseMod(m_p);
|
||||||
|
|
||||||
|
Precompute();
|
||||||
|
}
|
||||||
|
|
||||||
|
void InvertibleRWFunction::Initialize(const Integer &n, const Integer &p, const Integer &q, const Integer &u)
|
||||||
|
{
|
||||||
|
m_n = n; m_p = p; m_q = q; m_u = u;
|
||||||
|
|
||||||
|
Precompute();
|
||||||
|
}
|
||||||
|
|
||||||
|
void InvertibleRWFunction::PrecomputeTweakedRoots() const
|
||||||
|
{
|
||||||
|
ModularArithmetic modp(m_p), modq(m_q);
|
||||||
|
|
||||||
|
#pragma omp parallel sections if(CRYPTOPP_RW_USE_OMP)
|
||||||
|
{
|
||||||
|
#pragma omp section
|
||||||
|
m_pre_2_9p = modp.Exponentiate(2, (9 * m_p - 11)/8);
|
||||||
|
#pragma omp section
|
||||||
|
m_pre_2_3q = modq.Exponentiate(2, (3 * m_q - 5)/8);
|
||||||
|
#pragma omp section
|
||||||
|
m_pre_q_p = modp.Exponentiate(m_q, m_p - 2);
|
||||||
|
}
|
||||||
|
|
||||||
|
m_precompute = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
void InvertibleRWFunction::LoadPrecomputation(BufferedTransformation &bt)
|
||||||
|
{
|
||||||
|
BERSequenceDecoder seq(bt);
|
||||||
|
m_pre_2_9p.BERDecode(seq);
|
||||||
|
m_pre_2_3q.BERDecode(seq);
|
||||||
|
m_pre_q_p.BERDecode(seq);
|
||||||
|
seq.MessageEnd();
|
||||||
|
|
||||||
|
m_precompute = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
void InvertibleRWFunction::SavePrecomputation(BufferedTransformation &bt) const
|
||||||
|
{
|
||||||
|
if(!m_precompute)
|
||||||
|
Precompute();
|
||||||
|
|
||||||
|
DERSequenceEncoder seq(bt);
|
||||||
|
m_pre_2_9p.DEREncode(seq);
|
||||||
|
m_pre_2_3q.DEREncode(seq);
|
||||||
|
m_pre_q_p.DEREncode(seq);
|
||||||
|
seq.MessageEnd();
|
||||||
}
|
}
|
||||||
|
|
||||||
void InvertibleRWFunction::BERDecode(BufferedTransformation &bt)
|
void InvertibleRWFunction::BERDecode(BufferedTransformation &bt)
|
||||||
|
|
@ -113,6 +165,8 @@ void InvertibleRWFunction::BERDecode(BufferedTransformation &bt)
|
||||||
m_q.BERDecode(seq);
|
m_q.BERDecode(seq);
|
||||||
m_u.BERDecode(seq);
|
m_u.BERDecode(seq);
|
||||||
seq.MessageEnd();
|
seq.MessageEnd();
|
||||||
|
|
||||||
|
m_precompute = false;
|
||||||
}
|
}
|
||||||
|
|
||||||
void InvertibleRWFunction::DEREncode(BufferedTransformation &bt) const
|
void InvertibleRWFunction::DEREncode(BufferedTransformation &bt) const
|
||||||
|
|
@ -125,44 +179,70 @@ void InvertibleRWFunction::DEREncode(BufferedTransformation &bt) const
|
||||||
seq.MessageEnd();
|
seq.MessageEnd();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// DJB's "RSA signatures and Rabin-Williams signatures..." (http://cr.yp.to/sigs/rwsota-20080131.pdf).
|
||||||
Integer InvertibleRWFunction::CalculateInverse(RandomNumberGenerator &rng, const Integer &x) const
|
Integer InvertibleRWFunction::CalculateInverse(RandomNumberGenerator &rng, const Integer &x) const
|
||||||
{
|
{
|
||||||
DoQuickSanityCheck();
|
DoQuickSanityCheck();
|
||||||
ModularArithmetic modn(m_n);
|
|
||||||
|
if(!m_precompute)
|
||||||
|
Precompute();
|
||||||
|
|
||||||
|
ModularArithmetic modn(m_n), modp(m_p), modq(m_q);
|
||||||
Integer r, rInv;
|
Integer r, rInv;
|
||||||
do {
|
|
||||||
// do this in a loop for people using small numbers for testing
|
do
|
||||||
|
{
|
||||||
|
// Do this in a loop for people using small numbers for testing
|
||||||
r.Randomize(rng, Integer::One(), m_n - Integer::One());
|
r.Randomize(rng, Integer::One(), m_n - Integer::One());
|
||||||
// Fix for CVE-2015-2141. Thanks to Evgeny Sidorov for reporting.
|
// Fix for CVE-2015-2141. Thanks to Evgeny Sidorov for reporting.
|
||||||
// Squaring to satisfy Jacobi requirements suggested by Jean-Pierre Münch.
|
// Squaring to satisfy Jacobi requirements suggested by Jean-Pierre Munch.
|
||||||
r = modn.Square(r);
|
r = modn.Square(r);
|
||||||
rInv = modn.MultiplicativeInverse(r);
|
rInv = modn.MultiplicativeInverse(r);
|
||||||
} while (rInv.IsZero());
|
} while (rInv.IsZero());
|
||||||
|
|
||||||
Integer re = modn.Square(r);
|
Integer re = modn.Square(r);
|
||||||
re = modn.Multiply(re, x); // blind
|
re = modn.Multiply(re, x); // blind
|
||||||
|
|
||||||
Integer cp=re%m_p, cq=re%m_q;
|
const Integer &h = re, &p = m_p, &q = m_q, &n = m_n;
|
||||||
if (Jacobi(cp, m_p) * Jacobi(cq, m_q) != 1)
|
Integer e, f;
|
||||||
|
|
||||||
|
const Integer U = modq.Exponentiate(h, (q+1)/8);
|
||||||
|
if(((modq.Exponentiate(U, 4) - h) % q).IsZero())
|
||||||
|
e = Integer::One();
|
||||||
|
else
|
||||||
|
e = -1;
|
||||||
|
|
||||||
|
const Integer eh = e*h, V = modp.Exponentiate(eh, (p-3)/8);
|
||||||
|
if(((modp.Multiply(modp.Exponentiate(V, 4), modp.Exponentiate(eh, 2)) - eh) % p).IsZero())
|
||||||
|
f = Integer::One();
|
||||||
|
else
|
||||||
|
f = 2;
|
||||||
|
|
||||||
|
Integer W, X;
|
||||||
|
#pragma omp parallel sections if(CRYPTOPP_RW_USE_OMP)
|
||||||
{
|
{
|
||||||
cp = cp.IsOdd() ? (cp+m_p) >> 1 : cp >> 1;
|
#pragma omp section
|
||||||
cq = cq.IsOdd() ? (cq+m_q) >> 1 : cq >> 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
#pragma omp parallel
|
|
||||||
#pragma omp sections
|
|
||||||
{
|
{
|
||||||
#pragma omp section
|
W = (f.IsUnit() ? U : modq.Multiply(m_pre_2_3q, U));
|
||||||
cp = ModularSquareRoot(cp, m_p);
|
|
||||||
#pragma omp section
|
|
||||||
cq = ModularSquareRoot(cq, m_q);
|
|
||||||
}
|
}
|
||||||
|
#pragma omp section
|
||||||
|
{
|
||||||
|
const Integer t = modp.Multiply(modp.Exponentiate(V, 3), eh);
|
||||||
|
X = (f.IsUnit() ? t : modp.Multiply(m_pre_2_9p, t));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
const Integer Y = W + q * modp.Multiply(m_pre_q_p, (X - W));
|
||||||
|
|
||||||
Integer y = CRT(cq, m_q, cp, m_p, m_u);
|
// Signature
|
||||||
y = modn.Multiply(y, rInv); // unblind
|
Integer s = modn.Multiply(modn.Square(Y), rInv);
|
||||||
y = STDMIN(y, m_n-y);
|
assert((e * f * s.Squared()) % m_n == x);
|
||||||
if (ApplyFunction(y) != x) // check
|
|
||||||
|
// IEEE P1363, Section 8.2.8 IFSP-RW, p.44
|
||||||
|
s = STDMIN(s, m_n - s);
|
||||||
|
if (ApplyFunction(s) != x) // check
|
||||||
throw Exception(Exception::OTHER_ERROR, "InvertibleRWFunction: computational error during private key operation");
|
throw Exception(Exception::OTHER_ERROR, "InvertibleRWFunction: computational error during private key operation");
|
||||||
return y;
|
|
||||||
|
return s;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool InvertibleRWFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const
|
bool InvertibleRWFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const
|
||||||
|
|
@ -197,6 +277,8 @@ void InvertibleRWFunction::AssignFrom(const NameValuePairs &source)
|
||||||
CRYPTOPP_SET_FUNCTION_ENTRY(Prime2)
|
CRYPTOPP_SET_FUNCTION_ENTRY(Prime2)
|
||||||
CRYPTOPP_SET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)
|
CRYPTOPP_SET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)
|
||||||
;
|
;
|
||||||
|
|
||||||
|
m_precompute = false;
|
||||||
}
|
}
|
||||||
|
|
||||||
NAMESPACE_END
|
NAMESPACE_END
|
||||||
|
|
|
||||||
39
rw.h
39
rw.h
|
|
@ -1,20 +1,24 @@
|
||||||
// rw.h - written and placed in the public domain by Wei Dai
|
// rw.h - written and placed in the public domain by Wei Dai
|
||||||
|
|
||||||
//! \file rw.h
|
//! \file rw.h
|
||||||
//! \brief Classes for Rabin-Williams signature schemes
|
//! \brief Classes for Rabin-Williams signature scheme
|
||||||
//! \details Rabin-Williams signature schemes as defined in IEEE P1363.
|
//! \details The implementation provides Rabin-Williams signature schemes as defined in
|
||||||
|
//! IEEE P1363. It uses Bernstein's tweaked square roots in place of square roots to
|
||||||
|
//! speedup calculations.
|
||||||
|
//! \sa <A HREF="http://cr.yp.to/sigs/rwsota-20080131.pdf">RSA signatures and Rabin–Williams
|
||||||
|
//! signatures: the state of the art (20080131)</A>, Section 6, <em>The tweaks e and f</em>.
|
||||||
|
|
||||||
#ifndef CRYPTOPP_RW_H
|
#ifndef CRYPTOPP_RW_H
|
||||||
#define CRYPTOPP_RW_H
|
#define CRYPTOPP_RW_H
|
||||||
|
|
||||||
|
|
||||||
#include "cryptlib.h"
|
#include "cryptlib.h"
|
||||||
#include "pubkey.h"
|
#include "pubkey.h"
|
||||||
#include "integer.h"
|
#include "integer.h"
|
||||||
|
|
||||||
NAMESPACE_BEGIN(CryptoPP)
|
NAMESPACE_BEGIN(CryptoPP)
|
||||||
|
|
||||||
//! _
|
//! \class RWFunction
|
||||||
|
//! \brief Rabin-Williams trapdoor function using the public key
|
||||||
class CRYPTOPP_DLL RWFunction : public TrapdoorFunction, public PublicKey
|
class CRYPTOPP_DLL RWFunction : public TrapdoorFunction, public PublicKey
|
||||||
{
|
{
|
||||||
typedef RWFunction ThisClass;
|
typedef RWFunction ThisClass;
|
||||||
|
|
@ -46,14 +50,16 @@ protected:
|
||||||
Integer m_n;
|
Integer m_n;
|
||||||
};
|
};
|
||||||
|
|
||||||
//! _
|
//! \class InvertibleRWFunction
|
||||||
|
//! \brief Rabin-Williams trapdoor function using the private key
|
||||||
class CRYPTOPP_DLL InvertibleRWFunction : public RWFunction, public TrapdoorFunctionInverse, public PrivateKey
|
class CRYPTOPP_DLL InvertibleRWFunction : public RWFunction, public TrapdoorFunctionInverse, public PrivateKey
|
||||||
{
|
{
|
||||||
typedef InvertibleRWFunction ThisClass;
|
typedef InvertibleRWFunction ThisClass;
|
||||||
|
|
||||||
public:
|
public:
|
||||||
void Initialize(const Integer &n, const Integer &p, const Integer &q, const Integer &u)
|
InvertibleRWFunction() : m_precompute(false) {}
|
||||||
{m_n = n; m_p = p; m_q = q; m_u = u;}
|
|
||||||
|
void Initialize(const Integer &n, const Integer &p, const Integer &q, const Integer &u);
|
||||||
// generate a random private key
|
// generate a random private key
|
||||||
void Initialize(RandomNumberGenerator &rng, unsigned int modulusBits)
|
void Initialize(RandomNumberGenerator &rng, unsigned int modulusBits)
|
||||||
{GenerateRandomWithKeySize(rng, modulusBits);}
|
{GenerateRandomWithKeySize(rng, modulusBits);}
|
||||||
|
|
@ -83,11 +89,25 @@ public:
|
||||||
void SetPrime2(const Integer &q) {m_q = q;}
|
void SetPrime2(const Integer &q) {m_q = q;}
|
||||||
void SetMultiplicativeInverseOfPrime2ModPrime1(const Integer &u) {m_u = u;}
|
void SetMultiplicativeInverseOfPrime2ModPrime1(const Integer &u) {m_u = u;}
|
||||||
|
|
||||||
|
virtual bool SupportsPrecomputation() const {return true;}
|
||||||
|
virtual void Precompute(unsigned int unused = 0) {PrecomputeTweakedRoots();}
|
||||||
|
virtual void Precompute(unsigned int unused = 0) const {PrecomputeTweakedRoots();}
|
||||||
|
|
||||||
|
virtual void LoadPrecomputation(BufferedTransformation &storedPrecomputation);
|
||||||
|
virtual void SavePrecomputation(BufferedTransformation &storedPrecomputation) const;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void PrecomputeTweakedRoots() const;
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
Integer m_p, m_q, m_u;
|
Integer m_p, m_q, m_u;
|
||||||
|
|
||||||
|
mutable Integer m_pre_2_9p, m_pre_2_3q, m_pre_q_p;
|
||||||
|
mutable bool m_precompute;
|
||||||
};
|
};
|
||||||
|
|
||||||
//! RW
|
//! \class RW
|
||||||
|
//! \brief Rabin-Williams algorithm
|
||||||
struct RW
|
struct RW
|
||||||
{
|
{
|
||||||
static std::string StaticAlgorithmName() {return "RW";}
|
static std::string StaticAlgorithmName() {return "RW";}
|
||||||
|
|
@ -95,7 +115,8 @@ struct RW
|
||||||
typedef InvertibleRWFunction PrivateKey;
|
typedef InvertibleRWFunction PrivateKey;
|
||||||
};
|
};
|
||||||
|
|
||||||
//! RWSS
|
//! \class RWSS
|
||||||
|
//! \brief Rabin-Williams signature scheme
|
||||||
template <class STANDARD, class H>
|
template <class STANDARD, class H>
|
||||||
struct RWSS : public TF_SS<STANDARD, H, RW>
|
struct RWSS : public TF_SS<STANDARD, H, RW>
|
||||||
{
|
{
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue