Whitespace check-in

We also simplified the CPU_ProbeNEON logic a bit to a vmov.u32 and vshl.u32.
pull/853/head
Jeffrey Walton 2019-05-21 02:21:15 -04:00
parent 40251d9b7f
commit e8603143dc
No known key found for this signature in database
GPG Key ID: B36AB348921B1838
1 changed files with 92 additions and 107 deletions

View File

@ -6,6 +6,7 @@
// ARMv8a NEON instructions. A separate source file is needed
// because additional CXXFLAGS are required to enable the
// appropriate instructions sets in some build configurations.
// For Linux and Unix additional flags are not required.
#include "pch.h"
#include "config.h"
@ -39,55 +40,55 @@ NAMESPACE_BEGIN(CryptoPP)
extern "C" {
typedef void (*SigHandler)(int);
static jmp_buf s_jmpSIGILL;
static void SigIllHandler(int)
{
longjmp(s_jmpSIGILL, 1);
}
static jmp_buf s_jmpSIGILL;
static void SigIllHandler(int)
{
longjmp(s_jmpSIGILL, 1);
}
}
#endif // Not CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY
bool CPU_ProbeARMv7()
{
#if defined(CRYPTOPP_NO_CPU_FEATURE_PROBES)
return false;
return false;
#elif CRYPTOPP_BOOL_ARM32
# if defined(CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY)
volatile bool result = true;
__try
{
// Modern MS hardware is ARMv7
result = true;
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
return false;
}
return result;
# elif defined(__GNUC__) || defined(__clang__)
// longjmp and clobber warnings. Volatile is required.
// http://github.com/weidai11/cryptopp/issues/24 and http://stackoverflow.com/q/7721854
volatile bool result = true;
volatile bool result = true;
__try
{
// Modern MS hardware is ARMv7
result = true;
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
return false;
}
return result;
# else
// longjmp and clobber warnings. Volatile is required.
// http://github.com/weidai11/cryptopp/issues/24 and http://stackoverflow.com/q/7721854
volatile bool result = true;
volatile SigHandler oldHandler = signal(SIGILL, SigIllHandler);
if (oldHandler == SIG_ERR)
return false;
volatile SigHandler oldHandler = signal(SIGILL, SigIllHandler);
if (oldHandler == SIG_ERR)
return false;
volatile sigset_t oldMask;
if (sigprocmask(0, NULLPTR, (sigset_t*)&oldMask))
return false;
volatile sigset_t oldMask;
if (sigprocmask(0, NULLPTR, (sigset_t*)&oldMask))
return false;
if (setjmp(s_jmpSIGILL))
result = false;
else
{
if (setjmp(s_jmpSIGILL))
result = false;
else
{
#if 0
// ARMv7 added movt and movw
int a;
asm volatile("movw %0,%1 \n"
"movt %0,%1 \n"
: "=r"(a) : "i"(0x1234));
// ARMv7 added movt and movw
int a;
asm volatile("movw %0,%1 \n"
"movt %0,%1 \n"
: "=r"(a) : "i"(0x1234));
00000010 <_Z5test2v>: // ARM
10: e3010234 movw r0, #4660 ; 0x1234
@ -100,96 +101,80 @@ bool CPU_ProbeARMv7()
24: e12fff1e bx lr
#endif
int a;
asm volatile (
".arm \n\t"
".inst 0xe3010234 \n\t" // movw r0, 0x1234
".inst 0xe3410234 \n\t" // movt r0, 0x1234
"mov %0, r0 \n\t" // mov [a], r0
: "=r" (a) : : "r0");
volatile int a;
asm volatile (
".arm \n\t"
".inst 0xe3010234 \n\t" // movw r0, 0x1234
".inst 0xe3410234 \n\t" // movt r0, 0x1234
"mov %0, r0 \n\t" // mov [a], r0
: "=r" (a) : : "r0");
result = (a == 0x12341234);
}
result = (a == 0x12341234);
}
sigprocmask(SIG_SETMASK, (sigset_t*)&oldMask, NULLPTR);
signal(SIGILL, oldHandler);
return result;
sigprocmask(SIG_SETMASK, (sigset_t*)&oldMask, NULLPTR);
signal(SIGILL, oldHandler);
return result;
# endif
#else
return false;
return false;
#endif // CRYPTOPP_BOOL_ARM32
}
bool CPU_ProbeNEON()
{
#if defined(__aarch32__) || defined(__aarch64__)
return true;
return true;
#elif defined(CRYPTOPP_NO_CPU_FEATURE_PROBES)
return false;
#elif (CRYPTOPP_ARM_NEON_AVAILABLE)
return false;
#elif CRYPTOPP_BOOL_ARM32
# if defined(CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY)
volatile bool result = true;
__try
{
uint32_t v1[4] = {1,1,1,1};
uint32x4_t x1 = vld1q_u32(v1);
uint64_t v2[2] = {1,1};
uint64x2_t x2 = vld1q_u64(v2);
uint32x4_t x3 = vdupq_n_u32(2);
x3 = vsetq_lane_u32(vgetq_lane_u32(x1,0),x3,0);
x3 = vsetq_lane_u32(vgetq_lane_u32(x1,3),x3,3);
uint64x2_t x4 = vdupq_n_u64(2);
x4 = vsetq_lane_u64(vgetq_lane_u64(x2,0),x4,0);
x4 = vsetq_lane_u64(vgetq_lane_u64(x2,1),x4,1);
result = !!(vgetq_lane_u32(x3,0) | vgetq_lane_u64(x4,1));
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
return false;
}
return result;
volatile bool result = true;
__try
{
volatile uint32x4_t x = vdupq_n_u32(1);
volatile uint32x4_t y = vshlq_n_u32(x, 4);
return (y[0] & y[1] & y[2] & y[3]) == 16;
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
return false;
}
return result;
# else
// longjmp and clobber warnings. Volatile is required.
// http://github.com/weidai11/cryptopp/issues/24 and http://stackoverflow.com/q/7721854
volatile bool result = true;
// longjmp and clobber warnings. Volatile is required.
// http://github.com/weidai11/cryptopp/issues/24 and http://stackoverflow.com/q/7721854
volatile bool result = true;
volatile SigHandler oldHandler = signal(SIGILL, SigIllHandler);
if (oldHandler == SIG_ERR)
return false;
volatile SigHandler oldHandler = signal(SIGILL, SigIllHandler);
if (oldHandler == SIG_ERR)
return false;
volatile sigset_t oldMask;
if (sigprocmask(0, NULLPTR, (sigset_t*)&oldMask))
return false;
volatile sigset_t oldMask;
if (sigprocmask(0, NULLPTR, (sigset_t*)&oldMask))
return false;
if (setjmp(s_jmpSIGILL))
result = false;
else
{
// This is risky... When we hand encode the instructions
// for vmov.u32 and vshl.u32 we get a SIGILL. Apparently
// we need more than just the instructions. Using
// intrinsics introduces the risk because the whole
// file gets built with ISA options, and the higher ISA
// may escape the try block with the SIGILL guard.
uint32x4_t x = vdupq_n_u32(1);
uint32x4_t y = vshlq_n_u32(x, 4);
return (y[0] & y[1] & y[2] & y[3]) == 16;
}
if (setjmp(s_jmpSIGILL))
result = false;
else
{
uint32_t v1[4] = {1,1,1,1};
uint32x4_t x1 = vld1q_u32(v1);
uint64_t v2[2] = {1,1};
uint64x2_t x2 = vld1q_u64(v2);
uint32x4_t x3 = {0,0,0,0};
x3 = vsetq_lane_u32(vgetq_lane_u32(x1,0),x3,0);
x3 = vsetq_lane_u32(vgetq_lane_u32(x1,3),x3,3);
uint64x2_t x4 = {0,0};
x4 = vsetq_lane_u64(vgetq_lane_u64(x2,0),x4,0);
x4 = vsetq_lane_u64(vgetq_lane_u64(x2,1),x4,1);
// Hack... GCC optimizes away the code and returns true
result = !!(vgetq_lane_u32(x3,0) | vgetq_lane_u64(x4,1));
}
sigprocmask(SIG_SETMASK, (sigset_t*)&oldMask, NULLPTR);
signal(SIGILL, oldHandler);
return result;
sigprocmask(SIG_SETMASK, (sigset_t*)&oldMask, NULLPTR);
signal(SIGILL, oldHandler);
return result;
# endif
#else
return false;
return false;
#endif // CRYPTOPP_ARM_NEON_AVAILABLE
}