// donna_64.cpp - written and placed in public domain by Jeffrey Walton // This is a integration of Andrew Moon's public domain code. // Also see https://github.com/floodyberry/curve25519-donna. // If needed, see Moon's commit "Go back to ignoring 256th bit [sic]", // https://github.com/floodyberry/curve25519-donna/commit/57a683d18721a658 #include "pch.h" #include "config.h" #include "donna.h" #include "secblock.h" #include "misc.h" #include "cpu.h" // Squash MS LNK4221 and libtool warnings extern const char DONNA64_FNAME[] = __FILE__; #if defined(CRYPTOPP_CURVE25519_64BIT) #if defined(_MSC_VER) # include # pragma intrinsic(_umul128) # pragma intrinsic(__shiftright128) #endif ANONYMOUS_NAMESPACE_BEGIN using std::memcpy; using CryptoPP::byte; using CryptoPP::word32; using CryptoPP::sword32; using CryptoPP::word64; using CryptoPP::sword64; using CryptoPP::GetBlock; using CryptoPP::LittleEndian; typedef word64 bignum25519[5]; #if defined(CRYPTOPP_WORD128_AVAILABLE) using CryptoPP::word128; # define lo128(a) ((word64)a) # define hi128(a) ((word64)(a >> 64)) # define add128(a,b) a += b; # define add128_64(a,b) a += (word64)b; # define mul64x64_128(out,a,b) out = (word128)a * b; # define shr128(out,in,shift) out = (word64)(in >> (shift)); // # define shl128(out,in,shift) out = (word64)((in << shift) >> 64); #elif defined(_MSC_VER) struct word128 { word64 lo, hi; }; # define mul64x64_128(out,a,b) out.lo = _umul128(a,b,&out.hi); # define shr128_pair(out,hi,lo,shift) out = __shiftright128(lo, hi, shift); // # define shl128_pair(out,hi,lo,shift) out = __shiftleft128(lo, hi, shift); # define shr128(out,in,shift) shr128_pair(out, in.hi, in.lo, shift) // # define shl128(out,in,shift) shl128_pair(out, in.hi, in.lo, shift) # define add128(a,b) { word64 p = a.lo; a.lo += b.lo; a.hi += b.hi + (a.lo < p); } # define add128_64(a,b) { word64 p = a.lo; a.lo += b; a.hi += (a.lo < p); } # define lo128(a) (a.lo) # define hi128(a) (a.hi) #elif defined(__GNUC__) struct word128 { word64 lo, hi; }; # define mul64x64_128(out,a,b) __asm__ ("mulq %3" : "=a" (out.lo), "=d" (out.hi) : "a" (a), "rm" (b)); # define shr128_pair(out,hi,lo,shift) __asm__ ("shrdq %2,%1,%0" : "+r" (lo) : "r" (hi), "J" (shift)); out = lo; // # define shl128_pair(out,hi,lo,shift) __asm__ ("shldq %2,%1,%0" : "+r" (hi) : "r" (lo), "J" (shift)); out = hi; # define shr128(out,in,shift) shr128_pair(out,in.hi, in.lo, shift) // # define shl128(out,in,shift) shl128_pair(out,in.hi, in.lo, shift) # define add128(a,b) __asm__ ("addq %4,%2; adcq %5,%3" : "=r" (a.hi), "=r" (a.lo) : "1" (a.lo), "0" (a.hi), "rm" (b.lo), "rm" (b.hi) : "cc"); # define add128_64(a,b) __asm__ ("addq %4,%2; adcq $0,%3" : "=r" (a.hi), "=r" (a.lo) : "1" (a.lo), "0" (a.hi), "rm" (b) : "cc"); # define lo128(a) (a.lo) # define hi128(a) (a.hi) #else // https://groups.google.com/forum/#!forum/cryptopp-users # error "Unsupported platform" #endif #define ALIGN(n) CRYPTOPP_ALIGN_DATA(n) const byte basePoint[32] = {9}; const word64 reduce_mask_51 = ((word64)1 << 51) - 1; // const word64 reduce_mask_52 = ((word64)1 << 52) - 1; /* out = in */ inline void curve25519_copy(bignum25519 out, const bignum25519 in) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; out[3] = in[3]; out[4] = in[4]; } /* out = a + b */ inline void curve25519_add(bignum25519 out, const bignum25519 a, const bignum25519 b) { out[0] = a[0] + b[0]; out[1] = a[1] + b[1]; out[2] = a[2] + b[2]; out[3] = a[3] + b[3]; out[4] = a[4] + b[4]; } const word64 two54m152 = (((word64)1) << 54) - 152; const word64 two54m8 = (((word64)1) << 54) - 8; /* out = a - b */ inline void curve25519_sub(bignum25519 out, const bignum25519 a, const bignum25519 b) { out[0] = a[0] + two54m152 - b[0]; out[1] = a[1] + two54m8 - b[1]; out[2] = a[2] + two54m8 - b[2]; out[3] = a[3] + two54m8 - b[3]; out[4] = a[4] + two54m8 - b[4]; } /* out = (in * scalar) */ inline void curve25519_scalar_product(bignum25519 out, const bignum25519 in, const word64 scalar) { word128 a; word64 c; #if defined(CRYPTOPP_WORD128_AVAILABLE) a = ((word128) in[0]) * scalar; out[0] = (word64)a & reduce_mask_51; c = (word64)(a >> 51); a = ((word128) in[1]) * scalar + c; out[1] = (word64)a & reduce_mask_51; c = (word64)(a >> 51); a = ((word128) in[2]) * scalar + c; out[2] = (word64)a & reduce_mask_51; c = (word64)(a >> 51); a = ((word128) in[3]) * scalar + c; out[3] = (word64)a & reduce_mask_51; c = (word64)(a >> 51); a = ((word128) in[4]) * scalar + c; out[4] = (word64)a & reduce_mask_51; c = (word64)(a >> 51); out[0] += c * 19; #else mul64x64_128(a, in[0], scalar) out[0] = lo128(a) & reduce_mask_51; shr128(c, a, 51); mul64x64_128(a, in[1], scalar) add128_64(a, c) out[1] = lo128(a) & reduce_mask_51; shr128(c, a, 51); mul64x64_128(a, in[2], scalar) add128_64(a, c) out[2] = lo128(a) & reduce_mask_51; shr128(c, a, 51); mul64x64_128(a, in[3], scalar) add128_64(a, c) out[3] = lo128(a) & reduce_mask_51; shr128(c, a, 51); mul64x64_128(a, in[4], scalar) add128_64(a, c) out[4] = lo128(a) & reduce_mask_51; shr128(c, a, 51); out[0] += c * 19; #endif } /* out = a * b */ inline void curve25519_mul(bignum25519 out, const bignum25519 a, const bignum25519 b) { #if !defined(CRYPTOPP_WORD128_AVAILABLE) word128 mul; #endif word128 t[5]; word64 r0,r1,r2,r3,r4,s0,s1,s2,s3,s4,c; r0 = b[0]; r1 = b[1]; r2 = b[2]; r3 = b[3]; r4 = b[4]; s0 = a[0]; s1 = a[1]; s2 = a[2]; s3 = a[3]; s4 = a[4]; #if defined(CRYPTOPP_WORD128_AVAILABLE) t[0] = ((word128) r0) * s0; t[1] = ((word128) r0) * s1 + ((word128) r1) * s0; t[2] = ((word128) r0) * s2 + ((word128) r2) * s0 + ((word128) r1) * s1; t[3] = ((word128) r0) * s3 + ((word128) r3) * s0 + ((word128) r1) * s2 + ((word128) r2) * s1; t[4] = ((word128) r0) * s4 + ((word128) r4) * s0 + ((word128) r3) * s1 + ((word128) r1) * s3 + ((word128) r2) * s2; #else mul64x64_128(t[0], r0, s0) mul64x64_128(t[1], r0, s1) mul64x64_128(mul, r1, s0) add128(t[1], mul) mul64x64_128(t[2], r0, s2) mul64x64_128(mul, r2, s0) add128(t[2], mul) mul64x64_128(mul, r1, s1) add128(t[2], mul) mul64x64_128(t[3], r0, s3) mul64x64_128(mul, r3, s0) add128(t[3], mul) mul64x64_128(mul, r1, s2) add128(t[3], mul) mul64x64_128(mul, r2, s1) add128(t[3], mul) mul64x64_128(t[4], r0, s4) mul64x64_128(mul, r4, s0) add128(t[4], mul) mul64x64_128(mul, r3, s1) add128(t[4], mul) mul64x64_128(mul, r1, s3) add128(t[4], mul) mul64x64_128(mul, r2, s2) add128(t[4], mul) #endif r1 *= 19; r2 *= 19; r3 *= 19; r4 *= 19; #if defined(CRYPTOPP_WORD128_AVAILABLE) t[0] += ((word128) r4) * s1 + ((word128) r1) * s4 + ((word128) r2) * s3 + ((word128) r3) * s2; t[1] += ((word128) r4) * s2 + ((word128) r2) * s4 + ((word128) r3) * s3; t[2] += ((word128) r4) * s3 + ((word128) r3) * s4; t[3] += ((word128) r4) * s4; #else mul64x64_128(mul, r4, s1) add128(t[0], mul) mul64x64_128(mul, r1, s4) add128(t[0], mul) mul64x64_128(mul, r2, s3) add128(t[0], mul) mul64x64_128(mul, r3, s2) add128(t[0], mul) mul64x64_128(mul, r4, s2) add128(t[1], mul) mul64x64_128(mul, r2, s4) add128(t[1], mul) mul64x64_128(mul, r3, s3) add128(t[1], mul) mul64x64_128(mul, r4, s3) add128(t[2], mul) mul64x64_128(mul, r3, s4) add128(t[2], mul) mul64x64_128(mul, r4, s4) add128(t[3], mul) #endif r0 = lo128(t[0]) & reduce_mask_51; shr128(c, t[0], 51); add128_64(t[1], c) r1 = lo128(t[1]) & reduce_mask_51; shr128(c, t[1], 51); add128_64(t[2], c) r2 = lo128(t[2]) & reduce_mask_51; shr128(c, t[2], 51); add128_64(t[3], c) r3 = lo128(t[3]) & reduce_mask_51; shr128(c, t[3], 51); add128_64(t[4], c) r4 = lo128(t[4]) & reduce_mask_51; shr128(c, t[4], 51); r0 += c * 19; c = r0 >> 51; r0 = r0 & reduce_mask_51; r1 += c; out[0] = r0; out[1] = r1; out[2] = r2; out[3] = r3; out[4] = r4; } /* out = in^(2 * count) */ inline void curve25519_square_times(bignum25519 out, const bignum25519 in, word64 count) { #if !defined(CRYPTOPP_WORD128_AVAILABLE) word128 mul; #endif word128 t[5]; word64 r0,r1,r2,r3,r4,c; word64 d0,d1,d2,d4,d419; r0 = in[0]; r1 = in[1]; r2 = in[2]; r3 = in[3]; r4 = in[4]; do { d0 = r0 * 2; d1 = r1 * 2; d2 = r2 * 2 * 19; d419 = r4 * 19; d4 = d419 * 2; #if defined(CRYPTOPP_WORD128_AVAILABLE) t[0] = ((word128) r0) * r0 + ((word128) d4) * r1 + (((word128) d2) * (r3 )); t[1] = ((word128) d0) * r1 + ((word128) d4) * r2 + (((word128) r3) * (r3 * 19)); t[2] = ((word128) d0) * r2 + ((word128) r1) * r1 + (((word128) d4) * (r3 )); t[3] = ((word128) d0) * r3 + ((word128) d1) * r2 + (((word128) r4) * (d419 )); t[4] = ((word128) d0) * r4 + ((word128) d1) * r3 + (((word128) r2) * (r2 )); #else mul64x64_128(t[0], r0, r0) mul64x64_128(mul, d4, r1) add128(t[0], mul) mul64x64_128(mul, d2, r3) add128(t[0], mul) mul64x64_128(t[1], d0, r1) mul64x64_128(mul, d4, r2) add128(t[1], mul) mul64x64_128(mul, r3, r3 * 19) add128(t[1], mul) mul64x64_128(t[2], d0, r2) mul64x64_128(mul, r1, r1) add128(t[2], mul) mul64x64_128(mul, d4, r3) add128(t[2], mul) mul64x64_128(t[3], d0, r3) mul64x64_128(mul, d1, r2) add128(t[3], mul) mul64x64_128(mul, r4, d419) add128(t[3], mul) mul64x64_128(t[4], d0, r4) mul64x64_128(mul, d1, r3) add128(t[4], mul) mul64x64_128(mul, r2, r2) add128(t[4], mul) #endif r0 = lo128(t[0]) & reduce_mask_51; shr128(c, t[0], 51); add128_64(t[1], c) r1 = lo128(t[1]) & reduce_mask_51; shr128(c, t[1], 51); add128_64(t[2], c) r2 = lo128(t[2]) & reduce_mask_51; shr128(c, t[2], 51); add128_64(t[3], c) r3 = lo128(t[3]) & reduce_mask_51; shr128(c, t[3], 51); add128_64(t[4], c) r4 = lo128(t[4]) & reduce_mask_51; shr128(c, t[4], 51); r0 += c * 19; c = r0 >> 51; r0 = r0 & reduce_mask_51; r1 += c; } while(--count); out[0] = r0; out[1] = r1; out[2] = r2; out[3] = r3; out[4] = r4; } inline void curve25519_square(bignum25519 out, const bignum25519 in) { #if !defined(CRYPTOPP_WORD128_AVAILABLE) word128 mul; #endif word128 t[5]; word64 r0,r1,r2,r3,r4,c; word64 d0,d1,d2,d4,d419; r0 = in[0]; r1 = in[1]; r2 = in[2]; r3 = in[3]; r4 = in[4]; d0 = r0 * 2; d1 = r1 * 2; d2 = r2 * 2 * 19; d419 = r4 * 19; d4 = d419 * 2; #if defined(CRYPTOPP_WORD128_AVAILABLE) t[0] = ((word128) r0) * r0 + ((word128) d4) * r1 + (((word128) d2) * (r3 )); t[1] = ((word128) d0) * r1 + ((word128) d4) * r2 + (((word128) r3) * (r3 * 19)); t[2] = ((word128) d0) * r2 + ((word128) r1) * r1 + (((word128) d4) * (r3 )); t[3] = ((word128) d0) * r3 + ((word128) d1) * r2 + (((word128) r4) * (d419 )); t[4] = ((word128) d0) * r4 + ((word128) d1) * r3 + (((word128) r2) * (r2 )); #else mul64x64_128(t[0], r0, r0) mul64x64_128(mul, d4, r1) add128(t[0], mul) mul64x64_128(mul, d2, r3) add128(t[0], mul) mul64x64_128(t[1], d0, r1) mul64x64_128(mul, d4, r2) add128(t[1], mul) mul64x64_128(mul, r3, r3 * 19) add128(t[1], mul) mul64x64_128(t[2], d0, r2) mul64x64_128(mul, r1, r1) add128(t[2], mul) mul64x64_128(mul, d4, r3) add128(t[2], mul) mul64x64_128(t[3], d0, r3) mul64x64_128(mul, d1, r2) add128(t[3], mul) mul64x64_128(mul, r4, d419) add128(t[3], mul) mul64x64_128(t[4], d0, r4) mul64x64_128(mul, d1, r3) add128(t[4], mul) mul64x64_128(mul, r2, r2) add128(t[4], mul) #endif r0 = lo128(t[0]) & reduce_mask_51; shr128(c, t[0], 51); add128_64(t[1], c) r1 = lo128(t[1]) & reduce_mask_51; shr128(c, t[1], 51); add128_64(t[2], c) r2 = lo128(t[2]) & reduce_mask_51; shr128(c, t[2], 51); add128_64(t[3], c) r3 = lo128(t[3]) & reduce_mask_51; shr128(c, t[3], 51); add128_64(t[4], c) r4 = lo128(t[4]) & reduce_mask_51; shr128(c, t[4], 51); r0 += c * 19; c = r0 >> 51; r0 = r0 & reduce_mask_51; r1 += c; out[0] = r0; out[1] = r1; out[2] = r2; out[3] = r3; out[4] = r4; } /* Take a little-endian, 32-byte number and expand it into polynomial form */ inline void curve25519_expand(bignum25519 out, const byte *in) { word64 x0,x1,x2,x3; GetBlock block(in); block(x0)(x1)(x2)(x3); out[0] = x0 & reduce_mask_51; x0 = (x0 >> 51) | (x1 << 13); out[1] = x0 & reduce_mask_51; x1 = (x1 >> 38) | (x2 << 26); out[2] = x1 & reduce_mask_51; x2 = (x2 >> 25) | (x3 << 39); out[3] = x2 & reduce_mask_51; x3 = (x3 >> 12); out[4] = x3 & reduce_mask_51; /* ignore the top bit */ } /* Take a fully reduced polynomial form number and contract it into a * little-endian, 32-byte array */ inline void curve25519_contract(byte *out, const bignum25519 input) { word64 t[5]; word64 f, i; t[0] = input[0]; t[1] = input[1]; t[2] = input[2]; t[3] = input[3]; t[4] = input[4]; #define curve25519_contract_carry() \ t[1] += t[0] >> 51; t[0] &= reduce_mask_51; \ t[2] += t[1] >> 51; t[1] &= reduce_mask_51; \ t[3] += t[2] >> 51; t[2] &= reduce_mask_51; \ t[4] += t[3] >> 51; t[3] &= reduce_mask_51; #define curve25519_contract_carry_full() curve25519_contract_carry() \ t[0] += 19 * (t[4] >> 51); t[4] &= reduce_mask_51; #define curve25519_contract_carry_final() curve25519_contract_carry() \ t[4] &= reduce_mask_51; curve25519_contract_carry_full() curve25519_contract_carry_full() /* now t is between 0 and 2^255-1, properly carried. */ /* case 1: between 0 and 2^255-20. case 2: between 2^255-19 and 2^255-1. */ t[0] += 19; curve25519_contract_carry_full() /* now between 19 and 2^255-1 in both cases, and offset by 19. */ t[0] += 0x8000000000000 - 19; t[1] += 0x8000000000000 - 1; t[2] += 0x8000000000000 - 1; t[3] += 0x8000000000000 - 1; t[4] += 0x8000000000000 - 1; /* now between 2^255 and 2^256-20, and offset by 2^255. */ curve25519_contract_carry_final() #define write51full(n,shift) \ f = ((t[n] >> shift) | (t[n+1] << (51 - shift))); \ for (i = 0; i < 8; i++, f >>= 8) *out++ = (byte)f; #define write51(n) write51full(n,13*n) write51(0) write51(1) write51(2) write51(3) #undef curve25519_contract_carry #undef curve25519_contract_carry_full #undef curve25519_contract_carry_final #undef write51full #undef write51 } /* * Swap the contents of [qx] and [qpx] iff @swap is non-zero */ inline void curve25519_swap_conditional(bignum25519 x, bignum25519 qpx, word64 iswap) { const word64 swap = (word64)(-(sword64)iswap); word64 x0,x1,x2,x3,x4; x0 = swap & (x[0] ^ qpx[0]); x[0] ^= x0; qpx[0] ^= x0; x1 = swap & (x[1] ^ qpx[1]); x[1] ^= x1; qpx[1] ^= x1; x2 = swap & (x[2] ^ qpx[2]); x[2] ^= x2; qpx[2] ^= x2; x3 = swap & (x[3] ^ qpx[3]); x[3] ^= x3; qpx[3] ^= x3; x4 = swap & (x[4] ^ qpx[4]); x[4] ^= x4; qpx[4] ^= x4; } /* * In: b = 2^5 - 2^0 * Out: b = 2^250 - 2^0 */ void curve25519_pow_two5mtwo0_two250mtwo0(bignum25519 b) { ALIGN(16) bignum25519 t0,c; /* 2^5 - 2^0 */ /* b */ /* 2^10 - 2^5 */ curve25519_square_times(t0, b, 5); /* 2^10 - 2^0 */ curve25519_mul(b, t0, b); /* 2^20 - 2^10 */ curve25519_square_times(t0, b, 10); /* 2^20 - 2^0 */ curve25519_mul(c, t0, b); /* 2^40 - 2^20 */ curve25519_square_times(t0, c, 20); /* 2^40 - 2^0 */ curve25519_mul(t0, t0, c); /* 2^50 - 2^10 */ curve25519_square_times(t0, t0, 10); /* 2^50 - 2^0 */ curve25519_mul(b, t0, b); /* 2^100 - 2^50 */ curve25519_square_times(t0, b, 50); /* 2^100 - 2^0 */ curve25519_mul(c, t0, b); /* 2^200 - 2^100 */ curve25519_square_times(t0, c, 100); /* 2^200 - 2^0 */ curve25519_mul(t0, t0, c); /* 2^250 - 2^50 */ curve25519_square_times(t0, t0, 50); /* 2^250 - 2^0 */ curve25519_mul(b, t0, b); } /* * z^(p - 2) = z(2^255 - 21) */ void curve25519_recip(bignum25519 out, const bignum25519 z) { ALIGN(16) bignum25519 a, t0, b; /* 2 */ curve25519_square(a, z); /* a = 2 */ /* 8 */ curve25519_square_times(t0, a, 2); /* 9 */ curve25519_mul(b, t0, z); /* b = 9 */ /* 11 */ curve25519_mul(a, b, a); /* a = 11 */ /* 22 */ curve25519_square(t0, a); /* 2^5 - 2^0 = 31 */ curve25519_mul(b, t0, b); /* 2^250 - 2^0 */ curve25519_pow_two5mtwo0_two250mtwo0(b); /* 2^255 - 2^5 */ curve25519_square_times(b, b, 5); /* 2^255 - 21 */ curve25519_mul(out, b, a); } ANONYMOUS_NAMESPACE_END NAMESPACE_BEGIN(CryptoPP) NAMESPACE_BEGIN(Donna) int curve25519_CXX(byte sharedKey[32], const byte secretKey[32], const byte othersKey[32]) { FixedSizeSecBlock e; for (size_t i = 0;i < 32;++i) e[i] = secretKey[i]; e[0] &= 0xf8; e[31] &= 0x7f; e[31] |= 0x40; bignum25519 nqpqx = {1}, nqpqz = {0}, nqz = {1}, nqx; bignum25519 q, qx, qpqx, qqx, zzz, zmone; size_t bit, lastbit; curve25519_expand(q, othersKey); curve25519_copy(nqx, q); /* bit 255 is always 0, and bit 254 is always 1, so skip bit 255 and start pre-swapped on bit 254 */ lastbit = 1; /* we are doing bits 254..3 in the loop, but are swapping in bits 253..2 */ for (int i = 253; i >= 2; i--) { curve25519_add(qx, nqx, nqz); curve25519_sub(nqz, nqx, nqz); curve25519_add(qpqx, nqpqx, nqpqz); curve25519_sub(nqpqz, nqpqx, nqpqz); curve25519_mul(nqpqx, qpqx, nqz); curve25519_mul(nqpqz, qx, nqpqz); curve25519_add(qqx, nqpqx, nqpqz); curve25519_sub(nqpqz, nqpqx, nqpqz); curve25519_square(nqpqz, nqpqz); curve25519_square(nqpqx, qqx); curve25519_mul(nqpqz, nqpqz, q); curve25519_square(qx, qx); curve25519_square(nqz, nqz); curve25519_mul(nqx, qx, nqz); curve25519_sub(nqz, qx, nqz); curve25519_scalar_product(zzz, nqz, 121665); curve25519_add(zzz, zzz, qx); curve25519_mul(nqz, nqz, zzz); bit = (e[i/8] >> (i & 7)) & 1; curve25519_swap_conditional(nqx, nqpqx, bit ^ lastbit); curve25519_swap_conditional(nqz, nqpqz, bit ^ lastbit); lastbit = bit; } /* the final 3 bits are always zero, so we only need to double */ for (int i = 0; i < 3; i++) { curve25519_add(qx, nqx, nqz); curve25519_sub(nqz, nqx, nqz); curve25519_square(qx, qx); curve25519_square(nqz, nqz); curve25519_mul(nqx, qx, nqz); curve25519_sub(nqz, qx, nqz); curve25519_scalar_product(zzz, nqz, 121665); curve25519_add(zzz, zzz, qx); curve25519_mul(nqz, nqz, zzz); } curve25519_recip(zmone, nqz); curve25519_mul(nqz, nqx, zmone); curve25519_contract(sharedKey, nqz); return 0; } int curve25519(byte publicKey[32], const byte secretKey[32]) { #if (CRYPTOPP_CURVE25519_SSE2) if (HasSSE2()) return curve25519_SSE2(publicKey, secretKey, basePoint); else #endif return curve25519_CXX(publicKey, secretKey, basePoint); } int curve25519(byte sharedKey[32], const byte secretKey[32], const byte othersKey[32]) { #if (CRYPTOPP_CURVE25519_SSE2) if (HasSSE2()) return curve25519_SSE2(sharedKey, secretKey, othersKey); else #endif return curve25519_CXX(sharedKey, secretKey, othersKey); } NAMESPACE_END // Donna NAMESPACE_END // CryptoPP #endif // CRYPTOPP_CURVE25519_64BIT