// rijndael.cpp - modified by Chris Morgan // and Wei Dai from Paulo Baretto's Rijndael implementation // The original code and all modifications are in the public domain. // use "cl /EP /P /DCRYPTOPP_GENERATE_X64_MASM rijndael.cpp" to generate MASM code /* The assembly code was rewritten in Feb 2009 by Wei Dai to do counter mode caching, which was invented by Hongjun Wu and popularized by Daniel J. Bernstein and Peter Schwabe in their paper "New AES software speed records". The round function was also modified to include a trick similar to one in Brian Gladman's x86 assembly code, doing an 8-bit register move to minimize the number of register spills. Also switched to compressed tables and copying round keys to the stack. */ /* Defense against timing attacks was added in July 2006 by Wei Dai. The code now uses smaller tables in the first and last rounds, and preloads them into L1 cache before usage (by loading at least one element in each cache line). We try to delay subsequent accesses to each table (used in the first and last rounds) until all of the table has been preloaded. Hopefully the compiler isn't smart enough to optimize that code away. After preloading the table, we also try not to access any memory location other than the table and the stack, in order to prevent table entries from being unloaded from L1 cache, until that round is finished. (Some popular CPUs have 2-way associative caches.) */ // This is the original introductory comment: /** * version 3.0 (December 2000) * * Optimised ANSI C code for the Rijndael cipher (now AES) * * author Vincent Rijmen * author Antoon Bosselaers * author Paulo Barreto * * This code is hereby placed in the public domain. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "pch.h" #ifndef CRYPTOPP_IMPORTS #ifndef CRYPTOPP_GENERATE_X64_MASM #include "rijndael.h" #include "misc.h" #include "cpu.h" NAMESPACE_BEGIN(CryptoPP) #ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE || defined(CRYPTOPP_X64_MASM_AVAILABLE) namespace rdtable {CRYPTOPP_ALIGN_DATA(16) word64 Te[256+2];} using namespace rdtable; #else static word64 Te[256]; #endif static word32 Td[256*4]; #else static word32 Te[256*4], Td[256*4]; #endif static bool s_TeFilled = false, s_TdFilled = false; #define f2(x) ((x<<1)^(((x>>7)&1)*0x11b)) #define f4(x) ((x<<2)^(((x>>6)&1)*0x11b)^(((x>>6)&2)*0x11b)) #define f8(x) ((x<<3)^(((x>>5)&1)*0x11b)^(((x>>5)&2)*0x11b)^(((x>>5)&4)*0x11b)) #define f3(x) (f2(x) ^ x) #define f9(x) (f8(x) ^ x) #define fb(x) (f8(x) ^ f2(x) ^ x) #define fd(x) (f8(x) ^ f4(x) ^ x) #define fe(x) (f8(x) ^ f4(x) ^ f2(x)) void Rijndael::Base::FillEncTable() { for (int i=0; i<256; i++) { byte x = Se[i]; #ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS word32 y = word32(x)<<8 | word32(x)<<16 | word32(f2(x))<<24; Te[i] = word64(y | f3(x))<<32 | y; #else word32 y = f3(x) | word32(x)<<8 | word32(x)<<16 | word32(f2(x))<<24; for (int j=0; j<4; j++) { Te[i+j*256] = y; y = rotrFixed(y, 8); } #endif } #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE Te[256] = Te[257] = 0; #endif s_TeFilled = true; } void Rijndael::Base::FillDecTable() { for (int i=0; i<256; i++) { byte x = Sd[i]; #ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS_ word32 y = word32(fd(x))<<8 | word32(f9(x))<<16 | word32(fe(x))<<24; Td[i] = word64(y | fb(x))<<32 | y | x; #else word32 y = fb(x) | word32(fd(x))<<8 | word32(f9(x))<<16 | word32(fe(x))<<24;; for (int j=0; j<4; j++) { Td[i+j*256] = y; y = rotrFixed(y, 8); } #endif } s_TdFilled = true; } void Rijndael::Base::UncheckedSetKey(const byte *userKey, unsigned int keylen, const NameValuePairs &) { AssertValidKeyLength(keylen); m_rounds = keylen/4 + 6; m_key.New(4*(m_rounds+1)); word32 temp, *rk = m_key; const word32 *rc = rcon; GetUserKey(BIG_ENDIAN_ORDER, rk, keylen/4, userKey, keylen); while (true) { temp = rk[keylen/4-1]; rk[keylen/4] = rk[0] ^ (word32(Se[GETBYTE(temp, 2)]) << 24) ^ (word32(Se[GETBYTE(temp, 1)]) << 16) ^ (word32(Se[GETBYTE(temp, 0)]) << 8) ^ Se[GETBYTE(temp, 3)] ^ *(rc++); rk[keylen/4+1] = rk[1] ^ rk[keylen/4]; rk[keylen/4+2] = rk[2] ^ rk[keylen/4+1]; rk[keylen/4+3] = rk[3] ^ rk[keylen/4+2]; if (rk + keylen/4 + 4 == m_key.end()) break; if (keylen == 24) { rk[10] = rk[ 4] ^ rk[ 9]; rk[11] = rk[ 5] ^ rk[10]; } else if (keylen == 32) { temp = rk[11]; rk[12] = rk[ 4] ^ (word32(Se[GETBYTE(temp, 3)]) << 24) ^ (word32(Se[GETBYTE(temp, 2)]) << 16) ^ (word32(Se[GETBYTE(temp, 1)]) << 8) ^ Se[GETBYTE(temp, 0)]; rk[13] = rk[ 5] ^ rk[12]; rk[14] = rk[ 6] ^ rk[13]; rk[15] = rk[ 7] ^ rk[14]; } rk += keylen/4; } if (IsForwardTransformation()) { if (!s_TeFilled) FillEncTable(); } else { if (!s_TdFilled) FillDecTable(); unsigned int i, j; rk = m_key; /* invert the order of the round keys: */ for (i = 0, j = 4*m_rounds; i < j; i += 4, j -= 4) { temp = rk[i ]; rk[i ] = rk[j ]; rk[j ] = temp; temp = rk[i + 1]; rk[i + 1] = rk[j + 1]; rk[j + 1] = temp; temp = rk[i + 2]; rk[i + 2] = rk[j + 2]; rk[j + 2] = temp; temp = rk[i + 3]; rk[i + 3] = rk[j + 3]; rk[j + 3] = temp; } /* apply the inverse MixColumn transform to all round keys but the first and the last: */ for (i = 1; i < m_rounds; i++) { rk += 4; rk[0] = Td[0*256+Se[GETBYTE(rk[0], 3)]] ^ Td[1*256+Se[GETBYTE(rk[0], 2)]] ^ Td[2*256+Se[GETBYTE(rk[0], 1)]] ^ Td[3*256+Se[GETBYTE(rk[0], 0)]]; rk[1] = Td[0*256+Se[GETBYTE(rk[1], 3)]] ^ Td[1*256+Se[GETBYTE(rk[1], 2)]] ^ Td[2*256+Se[GETBYTE(rk[1], 1)]] ^ Td[3*256+Se[GETBYTE(rk[1], 0)]]; rk[2] = Td[0*256+Se[GETBYTE(rk[2], 3)]] ^ Td[1*256+Se[GETBYTE(rk[2], 2)]] ^ Td[2*256+Se[GETBYTE(rk[2], 1)]] ^ Td[3*256+Se[GETBYTE(rk[2], 0)]]; rk[3] = Td[0*256+Se[GETBYTE(rk[3], 3)]] ^ Td[1*256+Se[GETBYTE(rk[3], 2)]] ^ Td[2*256+Se[GETBYTE(rk[3], 1)]] ^ Td[3*256+Se[GETBYTE(rk[3], 0)]]; } } ConditionalByteReverse(BIG_ENDIAN_ORDER, m_key.begin(), m_key.begin(), 16); ConditionalByteReverse(BIG_ENDIAN_ORDER, m_key + m_rounds*4, m_key + m_rounds*4, 16); } #pragma warning(disable: 4731) // frame pointer register 'ebp' modified by inline assembly code #endif // #ifndef CRYPTOPP_GENERATE_X64_MASM #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE CRYPTOPP_NAKED void CRYPTOPP_FASTCALL Rijndael_Enc_AdvancedProcessBlocks(void *locals, const word32 *k) { #if CRYPTOPP_BOOL_X86 #define L_REG esp #define L_INDEX(i) (L_REG+512+i) #define L_INXORBLOCKS L_INBLOCKS+4 #define L_OUTXORBLOCKS L_INBLOCKS+8 #define L_OUTBLOCKS L_INBLOCKS+12 #define L_INCREMENTS L_INDEX(16*15) #define L_SP L_INDEX(16*16) #define L_LENGTH L_INDEX(16*16+4) #define L_KEYS_BEGIN L_INDEX(16*16+8) #define MOVD movd #define MM(i) mm##i #define MXOR(a,b,c) \ AS2( movzx ebp, b)\ AS2( movd mm7, DWORD PTR [WORD_REG(si)+8*WORD_REG(bp)+MAP0TO4(c)])\ AS2( pxor MM(a), mm7)\ #define MMOV(a,b,c) \ AS2( movzx ebp, b)\ AS2( movd MM(a), DWORD PTR [WORD_REG(si)+8*WORD_REG(bp)+MAP0TO4(c)])\ #else #define L_REG r8 #define L_INDEX(i) (r8+i) #define L_INXORBLOCKS L_INBLOCKS+8 #define L_OUTXORBLOCKS L_INBLOCKS+16 #define L_OUTBLOCKS L_INBLOCKS+24 #define L_INCREMENTS L_INDEX(16*16) #define L_BP L_INDEX(16*18) #define L_LENGTH L_INDEX(16*18+8) #define L_KEYS_BEGIN L_INDEX(16*19) #define MOVD mov #define MM(i) r1##i##d #define MXOR(a,b,c) \ AS2( movzx ebp, b)\ AS2( xor MM(a), DWORD PTR [WORD_REG(si)+8*WORD_REG(bp)+MAP0TO4(c)])\ #define MMOV(a,b,c) \ AS2( movzx ebp, b)\ AS2( mov MM(a), DWORD PTR [WORD_REG(si)+8*WORD_REG(bp)+MAP0TO4(c)])\ #endif #define L_SUBKEYS L_INDEX(0) #define L_SAVED_X L_SUBKEYS #define L_KEY12 L_INDEX(16*12) #define L_LASTROUND L_INDEX(16*13) #define L_INBLOCKS L_INDEX(16*14) #define MAP0TO4(i) (ASM_MOD(i+3,4)+1) #define XOR(a,b,c) \ AS2( movzx ebp, b)\ AS2( xor a, DWORD PTR [WORD_REG(si)+8*WORD_REG(bp)+MAP0TO4(c)])\ #define MOV(a,b,c) \ AS2( movzx ebp, b)\ AS2( mov a, DWORD PTR [WORD_REG(si)+8*WORD_REG(bp)+MAP0TO4(c)])\ #ifdef CRYPTOPP_GENERATE_X64_MASM ALIGN 8 Rijndael_Enc_AdvancedProcessBlocks PROC FRAME rex_push_reg rsi push_reg rdi push_reg rbx push_reg rbp push_reg r12 .endprolog mov r8, rcx mov rsi, ?Te@rdtable@CryptoPP@@3PA_KA mov rdi, QWORD PTR [?g_cacheLineSize@CryptoPP@@3IA] #elif defined(__GNUC__) __asm__ __volatile__ ( ".intel_syntax noprefix;" ASL(Rijndael_Enc_AdvancedProcessBlocks) #if CRYPTOPP_BOOL_X64 AS2( mov r8, rcx) AS2( mov [L_BP], rbp) #endif #else AS1( push esi) AS1( push edi) AS2( lea esi, [Te]) AS2( mov edi, [g_cacheLineSize]) #endif #if CRYPTOPP_BOOL_X86 AS_PUSH_IF86( bx) AS_PUSH_IF86( bp) AS2( mov [ecx+16*12+16*4], esp) AS2( lea esp, [ecx-512]) #endif // copy subkeys to stack AS2( mov WORD_REG(bp), [L_KEYS_BEGIN]) AS2( mov WORD_REG(ax), 16) AS2( and WORD_REG(ax), WORD_REG(bp)) AS2( movdqa xmm3, XMMWORD_PTR [WORD_REG(dx)+16+WORD_REG(ax)]) // subkey 1 (non-counter) or 2 (counter) AS2( movdqa [L_KEY12], xmm3) AS2( lea WORD_REG(ax), [WORD_REG(dx)+WORD_REG(ax)+2*16]) AS2( sub WORD_REG(ax), WORD_REG(bp)) ASL(0) AS2( movdqa xmm0, [WORD_REG(ax)+WORD_REG(bp)]) AS2( movdqa XMMWORD_PTR [L_SUBKEYS+WORD_REG(bp)], xmm0) AS2( add WORD_REG(bp), 16) AS2( cmp WORD_REG(bp), 16*12) ASJ( jl, 0, b) // read subkeys 0, 1 and last AS2( movdqa xmm4, [WORD_REG(ax)+WORD_REG(bp)]) // last subkey AS2( movdqa xmm1, [WORD_REG(dx)]) // subkey 0 AS2( MOVD MM(1), [WORD_REG(dx)+4*4]) // 0,1,2,3 AS2( mov ebx, [WORD_REG(dx)+5*4]) // 4,5,6,7 AS2( mov ecx, [WORD_REG(dx)+6*4]) // 8,9,10,11 AS2( mov edx, [WORD_REG(dx)+7*4]) // 12,13,14,15 // load table into cache AS2( xor WORD_REG(ax), WORD_REG(ax)) ASL(9) AS2( mov ebp, [WORD_REG(si)+WORD_REG(ax)]) AS2( add WORD_REG(ax), WORD_REG(di)) AS2( mov ebp, [WORD_REG(si)+WORD_REG(ax)]) AS2( add WORD_REG(ax), WORD_REG(di)) AS2( mov ebp, [WORD_REG(si)+WORD_REG(ax)]) AS2( add WORD_REG(ax), WORD_REG(di)) AS2( mov ebp, [WORD_REG(si)+WORD_REG(ax)]) AS2( add WORD_REG(ax), WORD_REG(di)) AS2( cmp WORD_REG(ax), 2048) ASJ( jl, 9, b) AS1( lfence) AS2( test DWORD PTR [L_LENGTH], 1) ASJ( jz, 8, f) // counter mode one-time setup AS2( mov WORD_REG(bp), [L_INBLOCKS]) AS2( movdqa xmm2, [WORD_REG(bp)]) // counter AS2( pxor xmm2, xmm1) AS2( psrldq xmm1, 14) AS2( movd eax, xmm1) AS2( mov al, BYTE PTR [WORD_REG(bp)+15]) AS2( MOVD MM(2), eax) #if CRYPTOPP_BOOL_X86 AS2( mov eax, 1) AS2( movd mm3, eax) #endif // partial first round, in: xmm2(15,14,13,12;11,10,9,8;7,6,5,4;3,2,1,0), out: mm1, ebx, ecx, edx AS2( movd eax, xmm2) AS2( psrldq xmm2, 4) AS2( movd edi, xmm2) AS2( psrldq xmm2, 4) MXOR( 1, al, 0) // 0 XOR( edx, ah, 1) // 1 AS2( shr eax, 16) XOR( ecx, al, 2) // 2 XOR( ebx, ah, 3) // 3 AS2( mov eax, edi) AS2( movd edi, xmm2) AS2( psrldq xmm2, 4) XOR( ebx, al, 0) // 4 MXOR( 1, ah, 1) // 5 AS2( shr eax, 16) XOR( edx, al, 2) // 6 XOR( ecx, ah, 3) // 7 AS2( mov eax, edi) AS2( movd edi, xmm2) XOR( ecx, al, 0) // 8 XOR( ebx, ah, 1) // 9 AS2( shr eax, 16) MXOR( 1, al, 2) // 10 XOR( edx, ah, 3) // 11 AS2( mov eax, edi) XOR( edx, al, 0) // 12 XOR( ecx, ah, 1) // 13 AS2( shr eax, 16) XOR( ebx, al, 2) // 14 AS2( psrldq xmm2, 3) // partial second round, in: ebx(4,5,6,7), ecx(8,9,10,11), edx(12,13,14,15), out: eax, ebx, edi, mm0 AS2( mov eax, [L_KEY12+0*4]) AS2( mov edi, [L_KEY12+2*4]) AS2( MOVD MM(0), [L_KEY12+3*4]) MXOR( 0, cl, 3) /* 11 */ XOR( edi, bl, 3) /* 7 */ MXOR( 0, bh, 2) /* 6 */ AS2( shr ebx, 16) /* 4,5 */ XOR( eax, bl, 1) /* 5 */ MOV( ebx, bh, 0) /* 4 */ AS2( xor ebx, [L_KEY12+1*4]) XOR( eax, ch, 2) /* 10 */ AS2( shr ecx, 16) /* 8,9 */ XOR( eax, dl, 3) /* 15 */ XOR( ebx, dh, 2) /* 14 */ AS2( shr edx, 16) /* 12,13 */ XOR( edi, ch, 0) /* 8 */ XOR( ebx, cl, 1) /* 9 */ XOR( edi, dl, 1) /* 13 */ MXOR( 0, dh, 0) /* 12 */ AS2( movd ecx, xmm2) AS2( MOVD edx, MM(1)) AS2( MOVD [L_SAVED_X+3*4], MM(0)) AS2( mov [L_SAVED_X+0*4], eax) AS2( mov [L_SAVED_X+1*4], ebx) AS2( mov [L_SAVED_X+2*4], edi) ASJ( jmp, 5, f) ASL(3) // non-counter mode per-block setup AS2( MOVD MM(1), [L_KEY12+0*4]) // 0,1,2,3 AS2( mov ebx, [L_KEY12+1*4]) // 4,5,6,7 AS2( mov ecx, [L_KEY12+2*4]) // 8,9,10,11 AS2( mov edx, [L_KEY12+3*4]) // 12,13,14,15 ASL(8) AS2( mov WORD_REG(ax), [L_INBLOCKS]) AS2( movdqu xmm2, [WORD_REG(ax)]) AS2( mov WORD_REG(bp), [L_INXORBLOCKS]) AS2( movdqu xmm5, [WORD_REG(bp)]) AS2( pxor xmm2, xmm1) AS2( pxor xmm2, xmm5) // first round, in: xmm2(15,14,13,12;11,10,9,8;7,6,5,4;3,2,1,0), out: eax, ebx, ecx, edx AS2( movd eax, xmm2) AS2( psrldq xmm2, 4) AS2( movd edi, xmm2) AS2( psrldq xmm2, 4) MXOR( 1, al, 0) // 0 XOR( edx, ah, 1) // 1 AS2( shr eax, 16) XOR( ecx, al, 2) // 2 XOR( ebx, ah, 3) // 3 AS2( mov eax, edi) AS2( movd edi, xmm2) AS2( psrldq xmm2, 4) XOR( ebx, al, 0) // 4 MXOR( 1, ah, 1) // 5 AS2( shr eax, 16) XOR( edx, al, 2) // 6 XOR( ecx, ah, 3) // 7 AS2( mov eax, edi) AS2( movd edi, xmm2) XOR( ecx, al, 0) // 8 XOR( ebx, ah, 1) // 9 AS2( shr eax, 16) MXOR( 1, al, 2) // 10 XOR( edx, ah, 3) // 11 AS2( mov eax, edi) XOR( edx, al, 0) // 12 XOR( ecx, ah, 1) // 13 AS2( shr eax, 16) XOR( ebx, al, 2) // 14 MXOR( 1, ah, 3) // 15 AS2( MOVD eax, MM(1)) AS2( add L_REG, [L_KEYS_BEGIN]) AS2( add L_REG, 4*16) ASJ( jmp, 2, f) ASL(1) // counter-mode per-block setup AS2( MOVD ecx, MM(2)) AS2( MOVD edx, MM(1)) AS2( mov eax, [L_SAVED_X+0*4]) AS2( mov ebx, [L_SAVED_X+1*4]) AS2( xor cl, ch) AS2( and WORD_REG(cx), 255) ASL(5) #if CRYPTOPP_BOOL_X86 AS2( paddb MM(2), mm3) #else AS2( add MM(2), 1) #endif // remaining part of second round, in: edx(previous round),ebp(keyed counter byte) eax,ebx,[L_SAVED_X+2*4],[L_SAVED_X+3*4], out: eax,ebx,ecx,edx AS2( xor edx, DWORD PTR [WORD_REG(si)+WORD_REG(cx)*8+3]) XOR( ebx, dl, 3) MOV( ecx, dh, 2) AS2( shr edx, 16) AS2( xor ecx, [L_SAVED_X+2*4]) XOR( eax, dh, 0) MOV( edx, dl, 1) AS2( xor edx, [L_SAVED_X+3*4]) AS2( add L_REG, [L_KEYS_BEGIN]) AS2( add L_REG, 3*16) ASJ( jmp, 4, f) // in: eax(0,1,2,3), ebx(4,5,6,7), ecx(8,9,10,11), edx(12,13,14,15) // out: eax, ebx, edi, mm0 #define ROUND() \ MXOR( 0, cl, 3) /* 11 */\ AS2( mov cl, al) /* 8,9,10,3 */\ XOR( edi, ah, 2) /* 2 */\ AS2( shr eax, 16) /* 0,1 */\ XOR( edi, bl, 3) /* 7 */\ MXOR( 0, bh, 2) /* 6 */\ AS2( shr ebx, 16) /* 4,5 */\ MXOR( 0, al, 1) /* 1 */\ MOV( eax, ah, 0) /* 0 */\ XOR( eax, bl, 1) /* 5 */\ MOV( ebx, bh, 0) /* 4 */\ XOR( eax, ch, 2) /* 10 */\ XOR( ebx, cl, 3) /* 3 */\ AS2( shr ecx, 16) /* 8,9 */\ XOR( eax, dl, 3) /* 15 */\ XOR( ebx, dh, 2) /* 14 */\ AS2( shr edx, 16) /* 12,13 */\ XOR( edi, ch, 0) /* 8 */\ XOR( ebx, cl, 1) /* 9 */\ XOR( edi, dl, 1) /* 13 */\ MXOR( 0, dh, 0) /* 12 */\ ASL(2) // 2-round loop AS2( MOVD MM(0), [L_SUBKEYS-4*16+3*4]) AS2( mov edi, [L_SUBKEYS-4*16+2*4]) ROUND() AS2( mov ecx, edi) AS2( xor eax, [L_SUBKEYS-4*16+0*4]) AS2( xor ebx, [L_SUBKEYS-4*16+1*4]) AS2( MOVD edx, MM(0)) ASL(4) AS2( MOVD MM(0), [L_SUBKEYS-4*16+7*4]) AS2( mov edi, [L_SUBKEYS-4*16+6*4]) ROUND() AS2( mov ecx, edi) AS2( xor eax, [L_SUBKEYS-4*16+4*4]) AS2( xor ebx, [L_SUBKEYS-4*16+5*4]) AS2( MOVD edx, MM(0)) AS2( add L_REG, 32) AS2( test L_REG, 255) ASJ( jnz, 2, b) AS2( sub L_REG, 16*16) #define LAST(a, b, c) \ AS2( movzx ebp, a )\ AS2( movzx edi, BYTE PTR [WORD_REG(si)+WORD_REG(bp)*8+1] )\ AS2( movzx ebp, b )\ AS2( xor edi, DWORD PTR [WORD_REG(si)+WORD_REG(bp)*8+0] )\ AS2( mov WORD PTR [L_LASTROUND+c], di )\ // last round LAST(ch, dl, 2) LAST(dh, al, 6) AS2( shr edx, 16) LAST(ah, bl, 10) AS2( shr eax, 16) LAST(bh, cl, 14) AS2( shr ebx, 16) LAST(dh, al, 12) AS2( shr ecx, 16) LAST(ah, bl, 0) LAST(bh, cl, 4) LAST(ch, dl, 8) AS2( mov WORD_REG(ax), [L_OUTXORBLOCKS]) AS2( mov WORD_REG(bx), [L_OUTBLOCKS]) AS2( mov WORD_REG(cx), [L_LENGTH]) AS2( sub WORD_REG(cx), 16) AS2( movdqu xmm2, [WORD_REG(ax)]) AS2( pxor xmm2, xmm4) #if CRYPTOPP_BOOL_X86 AS2( movdqa xmm0, [L_INCREMENTS]) AS2( paddd xmm0, [L_INBLOCKS]) AS2( movdqa [L_INBLOCKS], xmm0) #else AS2( movdqa xmm0, [L_INCREMENTS+16]) AS2( paddq xmm0, [L_INBLOCKS+16]) AS2( movdqa [L_INBLOCKS+16], xmm0) #endif AS2( pxor xmm2, [L_LASTROUND]) AS2( movdqu [WORD_REG(bx)], xmm2) ASJ( jle, 7, f) AS2( mov [L_LENGTH], WORD_REG(cx)) AS2( test WORD_REG(cx), 1) ASJ( jnz, 1, b) #if CRYPTOPP_BOOL_X64 AS2( movdqa xmm0, [L_INCREMENTS]) AS2( paddd xmm0, [L_INBLOCKS]) AS2( movdqa [L_INBLOCKS], xmm0) #endif ASJ( jmp, 3, b) ASL(7) #if CRYPTOPP_BOOL_X86 AS2( mov esp, [L_SP]) AS1( emms) #else AS2( mov rbp, [L_BP]) #endif AS_POP_IF86( bp) AS_POP_IF86( bx) #ifndef __GNUC__ AS_POP_IF86( di) AS_POP_IF86( si) #endif #ifdef CRYPTOPP_GENERATE_X64_MASM pop r12 pop rbp pop rbx pop rdi pop rsi ret Rijndael_Enc_AdvancedProcessBlocks ENDP #else AS1( ret) #endif #ifdef __GNUC__ ".att_syntax prefix;" ); #endif } #endif #ifndef CRYPTOPP_GENERATE_X64_MASM #ifdef CRYPTOPP_X64_MASM_AVAILABLE extern "C" { void Rijndael_Enc_AdvancedProcessBlocks(void *locals, const word32 *k); } #endif static inline bool AliasedWithTable(const byte *begin, const byte *end) { size_t s0 = size_t(begin)%4096, s1 = size_t(end)%4096; size_t t0 = size_t(Te)%4096, t1 = (size_t(Te)+sizeof(Te))%4096; if (t1 > t0) return (s0 >= t0 && s0 < t1) || (s1 > t0 && s1 <= t1); else return (s0 < t1 || s1 <= t1) || (s0 >= t0 || s1 > t0); } size_t Rijndael::Enc::AdvancedProcessBlocks(const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) const { if (length < BLOCKSIZE) return length; if (HasSSE2()) { struct Locals { word32 subkeys[4*12], workspace[8]; const byte *inBlocks, *inXorBlocks, *outXorBlocks; byte *outBlocks; size_t inIncrement, inXorIncrement, outXorIncrement, outIncrement; size_t regSpill, lengthAndCounterFlag, keysBegin; }; const byte* zeros = (byte *)(Te+256); byte *space; do { space = (byte *)alloca(255+sizeof(Locals)); space += (256-(size_t)space%256)%256; } while (AliasedWithTable(space, space+sizeof(Locals))); Locals &locals = *(Locals *)space; locals.inBlocks = inBlocks; locals.inXorBlocks = (flags & BT_XorInput) && xorBlocks ? xorBlocks : zeros; locals.outXorBlocks = (flags & BT_XorInput) || !xorBlocks ? zeros : xorBlocks; locals.outBlocks = outBlocks; locals.inIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : BLOCKSIZE; locals.inXorIncrement = (flags & BT_XorInput) && xorBlocks ? BLOCKSIZE : 0; locals.outXorIncrement = (flags & BT_XorInput) || !xorBlocks ? 0 : BLOCKSIZE; locals.outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : BLOCKSIZE; locals.lengthAndCounterFlag = length - (length%16) - bool(flags & BT_InBlockIsCounter); int keysToCopy = m_rounds - (flags & BT_InBlockIsCounter ? 3 : 2); locals.keysBegin = (12-keysToCopy)*16; #ifdef __GNUC__ __asm__ __volatile__ ( AS1(call Rijndael_Enc_AdvancedProcessBlocks) : : "c" (&locals), "d" (m_key.begin()), "S" (Te), "D" (g_cacheLineSize) : "memory", "cc", "%eax" #if CRYPTOPP_BOOL_X64 , "%rbx", "%r8", "%r10", "%r11", "%r12" #endif ); #else Rijndael_Enc_AdvancedProcessBlocks(&locals, m_key); #endif return length%16; } else return BlockTransformation::AdvancedProcessBlocks(inBlocks, xorBlocks, outBlocks, length, flags); } void Rijndael::Enc::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const { #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE if (HasSSE2()) { Rijndael::Enc::AdvancedProcessBlocks(inBlock, xorBlock, outBlock, 16, 0); return; } #endif word32 s0, s1, s2, s3, t0, t1, t2, t3; const word32 *rk = m_key; s0 = ((const word32 *)inBlock)[0] ^ rk[0]; s1 = ((const word32 *)inBlock)[1] ^ rk[1]; s2 = ((const word32 *)inBlock)[2] ^ rk[2]; s3 = ((const word32 *)inBlock)[3] ^ rk[3]; t0 = rk[4]; t1 = rk[5]; t2 = rk[6]; t3 = rk[7]; rk += 8; // timing attack countermeasure. see comments at top for more details const int cacheLineSize = GetCacheLineSize(); unsigned int i; word32 u = 0; #ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS for (i=0; i<2048; i+=cacheLineSize) #else for (i=0; i<1024; i+=cacheLineSize) #endif u &= *(const word32 *)(((const byte *)Te)+i); u &= Te[255]; s0 |= u; s1 |= u; s2 |= u; s3 |= u; #define QUARTER_ROUND(t, a, b, c, d) \ a ^= TL(3, byte(t)); t >>= 8;\ b ^= TL(2, byte(t)); t >>= 8;\ c ^= TL(1, byte(t)); t >>= 8;\ d ^= TL(0, t); #ifdef IS_LITTLE_ENDIAN #ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS #define TL(i, x) (*(word32 *)((byte *)Te + x*8 + (6-i)%4+1)) #else #define TL(i, x) rotrFixed(Te[x], (3-i)*8) #endif #define QUARTER_ROUND1(t, a, b, c, d) QUARTER_ROUND(t, d, c, b, a) #else #ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS #define TL(i, x) (*(word32 *)((byte *)Te + x*8 + (4-i)%4)) #else #define TL(i, x) rotrFixed(Te[x], i*8) #endif #define QUARTER_ROUND1 QUARTER_ROUND #endif QUARTER_ROUND1(s3, t0, t1, t2, t3) QUARTER_ROUND1(s2, t3, t0, t1, t2) QUARTER_ROUND1(s1, t2, t3, t0, t1) QUARTER_ROUND1(s0, t1, t2, t3, t0) #if defined(CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS) && defined(IS_LITTLE_ENDIAN) #undef TL #define TL(i, x) (*(word32 *)((byte *)Te + x*8 + (i+3)%4+1)) #endif #ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS #undef TL #define TL(i, x) Te[i*256 + x] #endif // Nr - 2 full rounds: unsigned int r = m_rounds/2 - 1; do { s0 = rk[0]; s1 = rk[1]; s2 = rk[2]; s3 = rk[3]; QUARTER_ROUND(t3, s0, s1, s2, s3) QUARTER_ROUND(t2, s3, s0, s1, s2) QUARTER_ROUND(t1, s2, s3, s0, s1) QUARTER_ROUND(t0, s1, s2, s3, s0) t0 = rk[4]; t1 = rk[5]; t2 = rk[6]; t3 = rk[7]; QUARTER_ROUND(s3, t0, t1, t2, t3) QUARTER_ROUND(s2, t3, t0, t1, t2) QUARTER_ROUND(s1, t2, t3, t0, t1) QUARTER_ROUND(s0, t1, t2, t3, t0) #undef QUARTER_ROUND rk += 8; } while (--r); word32 tbw[4]; byte *const tempBlock = (byte *)tbw; word32 *const obw = (word32 *)outBlock; const word32 *const xbw = (const word32 *)xorBlock; #define QUARTER_ROUND(t, a, b, c, d) \ tempBlock[a] = ((byte *)(Te+byte(t)))[1]; t >>= 8;\ tempBlock[b] = ((byte *)(Te+byte(t)))[1]; t >>= 8;\ tempBlock[c] = ((byte *)(Te+byte(t)))[1]; t >>= 8;\ tempBlock[d] = ((byte *)(Te+t))[1]; QUARTER_ROUND(t2, 15, 2, 5, 8) QUARTER_ROUND(t1, 11, 14, 1, 4) QUARTER_ROUND(t0, 7, 10, 13, 0) QUARTER_ROUND(t3, 3, 6, 9, 12) #undef QUARTER_ROUND if (xbw) { obw[0] = tbw[0] ^ xbw[0] ^ rk[0]; obw[1] = tbw[1] ^ xbw[1] ^ rk[1]; obw[2] = tbw[2] ^ xbw[2] ^ rk[2]; obw[3] = tbw[3] ^ xbw[3] ^ rk[3]; } else { obw[0] = tbw[0] ^ rk[0]; obw[1] = tbw[1] ^ rk[1]; obw[2] = tbw[2] ^ rk[2]; obw[3] = tbw[3] ^ rk[3]; } } void Rijndael::Dec::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const { word32 s0, s1, s2, s3, t0, t1, t2, t3; const word32 *rk = m_key; s0 = ((const word32 *)inBlock)[0] ^ rk[0]; s1 = ((const word32 *)inBlock)[1] ^ rk[1]; s2 = ((const word32 *)inBlock)[2] ^ rk[2]; s3 = ((const word32 *)inBlock)[3] ^ rk[3]; t0 = rk[4]; t1 = rk[5]; t2 = rk[6]; t3 = rk[7]; rk += 8; // timing attack countermeasure. see comments at top for more details const int cacheLineSize = GetCacheLineSize(); unsigned int i; word32 u = 0; for (i=0; i<1024; i+=cacheLineSize) u &= *(const word32 *)(((const byte *)Td)+i); u &= Td[255]; s0 |= u; s1 |= u; s2 |= u; s3 |= u; // first round #ifdef IS_BIG_ENDIAN #define QUARTER_ROUND(t, a, b, c, d) \ a ^= rotrFixed(Td[byte(t)], 24); t >>= 8;\ b ^= rotrFixed(Td[byte(t)], 16); t >>= 8;\ c ^= rotrFixed(Td[byte(t)], 8); t >>= 8;\ d ^= Td[t]; #else #define QUARTER_ROUND(t, a, b, c, d) \ d ^= Td[byte(t)]; t >>= 8;\ c ^= rotrFixed(Td[byte(t)], 8); t >>= 8;\ b ^= rotrFixed(Td[byte(t)], 16); t >>= 8;\ a ^= rotrFixed(Td[t], 24); #endif QUARTER_ROUND(s3, t2, t1, t0, t3) QUARTER_ROUND(s2, t1, t0, t3, t2) QUARTER_ROUND(s1, t0, t3, t2, t1) QUARTER_ROUND(s0, t3, t2, t1, t0) #undef QUARTER_ROUND // Nr - 2 full rounds: unsigned int r = m_rounds/2 - 1; do { #define QUARTER_ROUND(t, a, b, c, d) \ a ^= Td[3*256+byte(t)]; t >>= 8;\ b ^= Td[2*256+byte(t)]; t >>= 8;\ c ^= Td[1*256+byte(t)]; t >>= 8;\ d ^= Td[t]; s0 = rk[0]; s1 = rk[1]; s2 = rk[2]; s3 = rk[3]; QUARTER_ROUND(t3, s2, s1, s0, s3) QUARTER_ROUND(t2, s1, s0, s3, s2) QUARTER_ROUND(t1, s0, s3, s2, s1) QUARTER_ROUND(t0, s3, s2, s1, s0) t0 = rk[4]; t1 = rk[5]; t2 = rk[6]; t3 = rk[7]; QUARTER_ROUND(s3, t2, t1, t0, t3) QUARTER_ROUND(s2, t1, t0, t3, t2) QUARTER_ROUND(s1, t0, t3, t2, t1) QUARTER_ROUND(s0, t3, t2, t1, t0) #undef QUARTER_ROUND rk += 8; } while (--r); // timing attack countermeasure. see comments at top for more details u = 0; for (i=0; i<256; i+=cacheLineSize) u &= *(const word32 *)(Sd+i); u &= *(const word32 *)(Sd+252); t0 |= u; t1 |= u; t2 |= u; t3 |= u; word32 tbw[4]; byte *const tempBlock = (byte *)tbw; word32 *const obw = (word32 *)outBlock; const word32 *const xbw = (const word32 *)xorBlock; #define QUARTER_ROUND(t, a, b, c, d) \ tempBlock[a] = Sd[byte(t)]; t >>= 8;\ tempBlock[b] = Sd[byte(t)]; t >>= 8;\ tempBlock[c] = Sd[byte(t)]; t >>= 8;\ tempBlock[d] = Sd[t]; QUARTER_ROUND(t2, 7, 2, 13, 8) QUARTER_ROUND(t1, 3, 14, 9, 4) QUARTER_ROUND(t0, 15, 10, 5, 0) QUARTER_ROUND(t3, 11, 6, 1, 12) #undef QUARTER_ROUND if (xbw) { obw[0] = tbw[0] ^ xbw[0] ^ rk[0]; obw[1] = tbw[1] ^ xbw[1] ^ rk[1]; obw[2] = tbw[2] ^ xbw[2] ^ rk[2]; obw[3] = tbw[3] ^ xbw[3] ^ rk[3]; } else { obw[0] = tbw[0] ^ rk[0]; obw[1] = tbw[1] ^ rk[1]; obw[2] = tbw[2] ^ rk[2]; obw[3] = tbw[3] ^ rk[3]; } } NAMESPACE_END #endif #endif