// speck-simd.cpp - written and placed in the public domain by Jeffrey Walton // // This source file uses intrinsics and built-ins to gain access to // AES-NI, ARMv8a AES and Power8 AES instructions. A separate source // file is needed because additional CXXFLAGS are required to enable // the appropriate instructions sets in some build configurations. #include "pch.h" #include "config.h" #include "speck.h" #include "misc.h" #if (CRYPTOPP_SSSE3_AVAILABLE) # include #endif // Hack for SunCC, http://github.com/weidai11/cryptopp/issues/224 #if (__SUNPRO_CC >= 0x5130) # define MAYBE_CONST # define MAYBE_UNCONST_CAST(T, x) const_cast(x) #else # define MAYBE_CONST const # define MAYBE_UNCONST_CAST(T, x) (x) #endif // Clang __m128i casts, http://bugs.llvm.org/show_bug.cgi?id=20670 #define M128_CAST(x) ((__m128i *)(void *)(x)) #define CONST_M128_CAST(x) ((const __m128i *)(const void *)(x)) ANONYMOUS_NAMESPACE_BEGIN using CryptoPP::byte; using CryptoPP::word32; using CryptoPP::word64; using CryptoPP::rotlFixed; using CryptoPP::rotrFixed; using CryptoPP::BlockTransformation; #if defined(CRYPTOPP_SSSE3_AVAILABLE) CRYPTOPP_ALIGN_DATA(16) const word32 s_one[] = {0, 0, 0, 1<<24}; template inline __m128i RotateLeft64(const __m128i& val) { CRYPTOPP_ASSERT(R < 64); const __m128i a(_mm_slli_epi64(val, R)); const __m128i b(_mm_srli_epi64(val, 64-R)); return _mm_or_si128(a, b); } template inline __m128i RotateRight64(const __m128i& val) { CRYPTOPP_ASSERT(R < 64); const __m128i a(_mm_slli_epi64(val, 64-R)); const __m128i b(_mm_srli_epi64(val, R)); return _mm_or_si128(a, b); } inline void SPECK128_Enc_Block(__m128i &block0, const word64 *subkeys, unsigned int rounds) { // Hack ahead... SPECK128_AdvancedProcessBlocks_SSSE3 loads each SPECK-128 block into a // __m128i. We can't SSE over them, so we rearrange the data to allow packed operations. // Its also easier to permute them in SPECK128_Enc_4_Blocks rather than the calling code. // SPECK128_AdvancedProcessBlocks_SSSE3 is rather messy. __m128i block1 = _mm_setzero_si128(); __m128i x1 = _mm_unpacklo_epi64(block0, block1); __m128i y1 = _mm_unpackhi_epi64(block0, block1); const __m128i mask = _mm_set_epi8(8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7); x1 = _mm_shuffle_epi8(x1, mask); y1 = _mm_shuffle_epi8(y1, mask); for (size_t i=0; static_cast(i)(x1); x1 = _mm_add_epi64(x1, y1); x1 = _mm_xor_si128(x1, k1); y1 = RotateLeft64<3>(y1); y1 = _mm_xor_si128(y1, x1); } x1 = _mm_shuffle_epi8(x1, mask); y1 = _mm_shuffle_epi8(y1, mask); block0 = _mm_unpacklo_epi64(x1, y1); block1 = _mm_unpackhi_epi64(x1, y1); } inline void SPECK128_Enc_4_Blocks(__m128i &block0, __m128i &block1, __m128i &block2, __m128i &block3, const word64 *subkeys, unsigned int rounds) { // Hack ahead... SPECK128_AdvancedProcessBlocks_SSSE3 loads each SPECK-128 block into a // __m128i. We can't SSE over them, so we rearrange the data to allow packed operations. // Its also easier to permute them in SPECK128_Enc_4_Blocks rather than the calling code. // SPECK128_AdvancedProcessBlocks_SSSE3 is rather messy. __m128i x1 = _mm_unpacklo_epi64(block0, block1); __m128i y1 = _mm_unpackhi_epi64(block0, block1); __m128i x2 = _mm_unpacklo_epi64(block2, block3); // x2 __m128i y2 = _mm_unpackhi_epi64(block2, block3); // y2 const __m128i mask = _mm_set_epi8(8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7); x1 = _mm_shuffle_epi8(x1, mask); y1 = _mm_shuffle_epi8(y1, mask); x2 = _mm_shuffle_epi8(x2, mask); y2 = _mm_shuffle_epi8(y2, mask); for (size_t i=0; static_cast(i)(x1); x2 = RotateRight64<8>(x2); x1 = _mm_add_epi64(x1, y1); x2 = _mm_add_epi64(x2, y2); x1 = _mm_xor_si128(x1, k1); x2 = _mm_xor_si128(x2, k1); y1 = RotateLeft64<3>(y1); y2 = RotateLeft64<3>(y2); y1 = _mm_xor_si128(y1, x1); y2 = _mm_xor_si128(y2, x2); } x1 = _mm_shuffle_epi8(x1, mask); y1 = _mm_shuffle_epi8(y1, mask); x2 = _mm_shuffle_epi8(x2, mask); y2 = _mm_shuffle_epi8(y2, mask); block0 = _mm_unpacklo_epi64(x1, y1); block1 = _mm_unpackhi_epi64(x1, y1); block2 = _mm_unpacklo_epi64(x2, y2); block3 = _mm_unpackhi_epi64(x2, y2); } inline void SPECK128_Dec_Block(__m128i &block0, const word64 *subkeys, unsigned int rounds) { // Hack ahead... SPECK128_AdvancedProcessBlocks_SSSE3 loads each SPECK-128 block into a // __m128i. We can't SSE over them, so we rearrange the data to allow packed operations. // Its also easier to permute them in SPECK128_Enc_4_Blocks rather than the calling code. // SPECK128_AdvancedProcessBlocks_SSSE3 is rather messy. __m128i block1 = _mm_setzero_si128(); __m128i x1 = _mm_unpacklo_epi64(block0, block1); __m128i y1 = _mm_unpackhi_epi64(block0, block1); const __m128i mask = _mm_set_epi8(8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7); x1 = _mm_shuffle_epi8(x1, mask); y1 = _mm_shuffle_epi8(y1, mask); for (size_t i=rounds-1; static_cast(i)>=0; --i) { const __m128i k1 = _mm_castpd_si128(_mm_loaddup_pd((const double*)(subkeys+i))); // y ^= x; y1 = _mm_xor_si128(y1, x1); // y = rotrFixed(y,3); y1 = RotateRight64<3>(y1); // x ^= k; x1 = _mm_xor_si128(x1, k1); // x -= y; x1 = _mm_sub_epi64(x1, y1); // x = rotlFixed(x,8); x1 = RotateLeft64<8>(x1); } x1 = _mm_shuffle_epi8(x1, mask); y1 = _mm_shuffle_epi8(y1, mask); block0 = _mm_unpacklo_epi64(x1, y1); block1 = _mm_unpackhi_epi64(x1, y1); } inline void SPECK128_Dec_4_Blocks(__m128i &block0, __m128i &block1, __m128i &block2, __m128i &block3, const word64 *subkeys, unsigned int rounds) { // Hack ahead... SPECK128_AdvancedProcessBlocks_SSSE3 loads each SPECK-128 block into a // __m128i. We can't SSE over them, so we rearrange the data to allow packed operations. // Its also easier to permute them in SPECK128_Enc_4_Blocks rather than the calling code. // SPECK128_AdvancedProcessBlocks_SSSE3 is rather messy. __m128i x1 = _mm_unpacklo_epi64(block0, block1); __m128i y1 = _mm_unpackhi_epi64(block0, block1); __m128i x2 = _mm_unpacklo_epi64(block2, block3); // x2 __m128i y2 = _mm_unpackhi_epi64(block2, block3); // y2 const __m128i mask = _mm_set_epi8(8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7); x1 = _mm_shuffle_epi8(x1, mask); y1 = _mm_shuffle_epi8(y1, mask); x2 = _mm_shuffle_epi8(x2, mask); y2 = _mm_shuffle_epi8(y2, mask); for (size_t i=rounds-1; static_cast(i)>=0; --i) { const __m128i k1 = _mm_castpd_si128(_mm_loaddup_pd((const double*)(subkeys+i))); // y ^= x; y1 = _mm_xor_si128(y1, x1); y2 = _mm_xor_si128(y2, x2); // y = rotrFixed(y,3); y1 = RotateRight64<3>(y1); y2 = RotateRight64<3>(y2); // x ^= k; x1 = _mm_xor_si128(x1, k1); x2 = _mm_xor_si128(x2, k1); // x -= y; x1 = _mm_sub_epi64(x1, y1); x2 = _mm_sub_epi64(x2, y2); // x = rotlFixed(x,8); x1 = RotateLeft64<8>(x1); x2 = RotateLeft64<8>(x2); } x1 = _mm_shuffle_epi8(x1, mask); y1 = _mm_shuffle_epi8(y1, mask); x2 = _mm_shuffle_epi8(x2, mask); y2 = _mm_shuffle_epi8(y2, mask); block0 = _mm_unpacklo_epi64(x1, y1); block1 = _mm_unpackhi_epi64(x1, y1); block2 = _mm_unpacklo_epi64(x2, y2); block3 = _mm_unpackhi_epi64(x2, y2); } template inline size_t SPECK128_AdvancedProcessBlocks_SSSE3(F1 func1, F4 func4, const word64 *subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { CRYPTOPP_ASSERT(subKeys); CRYPTOPP_ASSERT(inBlocks); CRYPTOPP_ASSERT(outBlocks); CRYPTOPP_ASSERT(length >= 16); const size_t blockSize = 16; size_t inIncrement = (flags & (BlockTransformation::BT_InBlockIsCounter|BlockTransformation::BT_DontIncrementInOutPointers)) ? 0 : blockSize; size_t xorIncrement = xorBlocks ? blockSize : 0; size_t outIncrement = (flags & BlockTransformation::BT_DontIncrementInOutPointers) ? 0 : blockSize; if (flags & BlockTransformation::BT_ReverseDirection) { inBlocks += length - blockSize; xorBlocks += length - blockSize; outBlocks += length - blockSize; inIncrement = 0-inIncrement; xorIncrement = 0-xorIncrement; outIncrement = 0-outIncrement; } if (flags & BlockTransformation::BT_AllowParallel) { while (length >= 4*blockSize) { __m128i block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks)), block1, block2, block3; if (flags & BlockTransformation::BT_InBlockIsCounter) { const __m128i be1 = *CONST_M128_CAST(s_one); block1 = _mm_add_epi32(block0, be1); block2 = _mm_add_epi32(block1, be1); block3 = _mm_add_epi32(block2, be1); _mm_storeu_si128(M128_CAST(inBlocks), _mm_add_epi32(block3, be1)); } else { inBlocks += inIncrement; block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks)); inBlocks += inIncrement; block2 = _mm_loadu_si128(CONST_M128_CAST(inBlocks)); inBlocks += inIncrement; block3 = _mm_loadu_si128(CONST_M128_CAST(inBlocks)); inBlocks += inIncrement; } if (flags & BlockTransformation::BT_XorInput) { // Coverity finding, appears to be false positive. Assert the condition. CRYPTOPP_ASSERT(xorBlocks); block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks))); xorBlocks += xorIncrement; block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks))); xorBlocks += xorIncrement; block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks))); xorBlocks += xorIncrement; block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks))); xorBlocks += xorIncrement; } func4(block0, block1, block2, block3, subKeys, static_cast(rounds)); if (xorBlocks && !(flags & BlockTransformation::BT_XorInput)) { block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks))); xorBlocks += xorIncrement; block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks))); xorBlocks += xorIncrement; block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks))); xorBlocks += xorIncrement; block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks))); xorBlocks += xorIncrement; } _mm_storeu_si128(M128_CAST(outBlocks), block0); outBlocks += outIncrement; _mm_storeu_si128(M128_CAST(outBlocks), block1); outBlocks += outIncrement; _mm_storeu_si128(M128_CAST(outBlocks), block2); outBlocks += outIncrement; _mm_storeu_si128(M128_CAST(outBlocks), block3); outBlocks += outIncrement; length -= 4*blockSize; } } while (length >= blockSize) { __m128i block = _mm_loadu_si128(CONST_M128_CAST(inBlocks)); if (flags & BlockTransformation::BT_XorInput) block = _mm_xor_si128(block, _mm_loadu_si128(CONST_M128_CAST(xorBlocks))); if (flags & BlockTransformation::BT_InBlockIsCounter) const_cast(inBlocks)[15]++; func1(block, subKeys, static_cast(rounds)); if (xorBlocks && !(flags & BlockTransformation::BT_XorInput)) block = _mm_xor_si128(block, _mm_loadu_si128(CONST_M128_CAST(xorBlocks))); _mm_storeu_si128(M128_CAST(outBlocks), block); inBlocks += inIncrement; outBlocks += outIncrement; xorBlocks += xorIncrement; length -= blockSize; } return length; } #endif // CRYPTOPP_SSSE3_AVAILABLE ANONYMOUS_NAMESPACE_END /////////////////////////////////////////////////////////// NAMESPACE_BEGIN(CryptoPP) #if defined(CRYPTOPP_SSSE3_AVAILABLE) size_t SPECK128_Enc_AdvancedProcessBlocks_SSSE3(const word64* subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { return SPECK128_AdvancedProcessBlocks_SSSE3(SPECK128_Enc_Block, SPECK128_Enc_4_Blocks, subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); } size_t SPECK128_Dec_AdvancedProcessBlocks_SSSE3(const word64* subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { return SPECK128_AdvancedProcessBlocks_SSSE3(SPECK128_Dec_Block, SPECK128_Dec_4_Blocks, subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); } #endif NAMESPACE_END