// ecpm.h - written and placed in public domain by Jean-Pierre Muench. Copyright assigned to Crypto++ project. //! \file ecpm.h //! \brief Classes for montgomery curves over prime fields #ifndef CRYPTOPP_ECPM_H #define CRYPTOPP_ECPM_H #include "cryptlib.h" #include "integer.h" #include "modarith.h" #include "eprecomp.h" #include "smartptr.h" #include "pubkey.h" #include "ecp.h" NAMESPACE_BEGIN(CryptoPP) // strategy: // first do it the conservative way: each SimultaneousMultiply is followed and preceeded by a transformation // later replace this algorithm using an optimized algorithm using the Montgomery Ladder class CRYPTOPP_DLL ECPM : public AbstractGroup { public: typedef ModularArithmetic Field; typedef Integer FieldElement; typedef ECPPoint Point; ECPM() {} ECPM(const ECPM &ecp, bool convertToMontgomeryRepresentation = false); ECPM(const Integer &modulus, const FieldElement &A, const FieldElement &B); // construct from BER encoded parameters // this constructor will decode and extract the the fields fieldID and curve of the sequence ECParameters ECPM(BufferedTransformation &bt); // encode the fields fieldID and curve of the sequence ECParameters void DEREncode(BufferedTransformation &bt) const; bool Equal(const Point &P, const Point &Q) const; const Point& Identity() const; const Point& Inverse(const Point &P) const; bool InversionIsFast() const { return true; } const Point& Add(const Point &P, const Point &Q) const; const Point& Double(const Point &P) const; Point ScalarMultiply(const Point &P, const Integer &k) const; Point CascadeScalarMultiply(const Point &P, const Integer &k1, const Point &Q, const Integer &k2) const; void SimultaneousMultiply(Point *results, const Point &base, const Integer *exponents, unsigned int exponentsCount) const; Point Multiply(const Integer &k, const Point &P) const { return ScalarMultiply(P, k); } Point CascadeMultiply(const Integer &k1, const Point &P, const Integer &k2, const Point &Q) const { return CascadeScalarMultiply(P, k1, Q, k2); } bool ValidateParameters(RandomNumberGenerator &rng, unsigned int level = 3) const; bool VerifyPoint(const Point &P) const; unsigned int EncodedPointSize(bool compressed = false) const { return 1 + (compressed ? 1 : 2)*GetField().MaxElementByteLength(); } // returns false if point is compressed and not valid (doesn't check if uncompressed) bool DecodePoint(Point &P, BufferedTransformation &bt, size_t len) const; bool DecodePoint(Point &P, const byte *encodedPoint, size_t len) const; void EncodePoint(byte *encodedPoint, const Point &P, bool compressed) const; void EncodePoint(BufferedTransformation &bt, const Point &P, bool compressed) const; Point BERDecodePoint(BufferedTransformation &bt) const; void DEREncodePoint(BufferedTransformation &bt, const Point &P, bool compressed) const; Integer FieldSize() const { return GetField().GetModulus(); } const Field & GetField() const { return *m_fieldPtr; } const FieldElement & GetA() const { return m_A; } const FieldElement & GetB() const { return m_B; } bool operator==(const ECPM &rhs) const { return GetField() == rhs.GetField() && m_A == rhs.m_A && m_B == rhs.m_B; } void operator=(const ECPM &rhs); #ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562 virtual ~ECPM() {} #endif private: inline Point WeierstrassToMontgomery(const Point& In) const; inline Point MontgomeryToWeierstrass(const Point& In) const; clonable_ptr m_fieldPtr; clonable_ptr m_ComputeEngine; // does the heavy lifting on the scalar multiplication FieldElement m_A, m_B; // M_B * y^2 = x^3 + m_A * x^2 + x (mod p) FieldElement m_AThirds, m_BInv; // for faster conversion, A/3 and 1/B mutable Point m_R; }; template class EcPrecomputation; //! ECPM precomputation template<> class EcPrecomputation : public DL_GroupPrecomputation { public: typedef ECPM EllipticCurve; // DL_GroupPrecomputation bool NeedConversions() const { return true; } Element ConvertIn(const Element &P) const { return P.identity ? P : ECPM::Point(m_ec->GetField().ConvertIn(P.x), m_ec->GetField().ConvertIn(P.y)); }; Element ConvertOut(const Element &P) const { return P.identity ? P : ECPM::Point(m_ec->GetField().ConvertOut(P.x), m_ec->GetField().ConvertOut(P.y)); } const AbstractGroup & GetGroup() const { return *m_ec; } Element BERDecodeElement(BufferedTransformation &bt) const { return m_ec->BERDecodePoint(bt); } void DEREncodeElement(BufferedTransformation &bt, const Element &v) const { m_ec->DEREncodePoint(bt, v, false); } // non-inherited void SetCurve(const ECPM &ec) { m_ec.reset(new ECPM(ec, true)); m_ecOriginal = ec; } const ECPM & GetCurve() const { return *m_ecOriginal; } #ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562 virtual ~EcPrecomputation() {} #endif private: value_ptr m_ec, m_ecOriginal; }; NAMESPACE_END #endif