cryptopp/rw.cpp

244 lines
6.3 KiB
C++

// rw.cpp - written and placed in the public domain by Wei Dai
#include "pch.h"
#include "rw.h"
#include "nbtheory.h"
#include "asn.h"
NAMESPACE_BEGIN(CryptoPP)
template<> const byte EMSA2DigestDecoration<SHA>::decoration = 0x33;
template<> const byte EMSA2DigestDecoration<RIPEMD160>::decoration = 0x31;
void EMSA2Pad::Pad(RandomNumberGenerator &, const byte *input, unsigned int inputLen, byte *emsa2Block, unsigned int emsa2BlockLen) const
{
assert (inputLen > 0 && inputLen <= MaxUnpaddedLength(emsa2BlockLen));
// convert from bit length to byte length
emsa2BlockLen++;
if (emsa2BlockLen % 8 > 1)
{
emsa2Block[0] = 0;
emsa2Block++;
}
emsa2BlockLen /= 8;
emsa2Block[0] = input[0]; // indicate empty or non-empty message
memset(emsa2Block+1, 0xbb, emsa2BlockLen-inputLen-2); // padd with 0xbb
emsa2Block[emsa2BlockLen-inputLen-1] = 0xba; // separator
memcpy(emsa2Block+emsa2BlockLen-inputLen, input+1, inputLen-1);
emsa2Block[emsa2BlockLen-1] = 0xcc; // make it congruent to 12 mod 16
}
DecodingResult EMSA2Pad::Unpad(const byte *emsa2Block, unsigned int emsa2BlockLen, byte *output) const
{
// convert from bit length to byte length
emsa2BlockLen++;
if (emsa2BlockLen % 8 > 1)
{
if (emsa2Block[0] != 0)
return DecodingResult();
emsa2Block++;
}
emsa2BlockLen /= 8;
// check last byte
if (emsa2Block[emsa2BlockLen-1] != 0xcc)
return DecodingResult();
// skip past the padding until we find the seperator
unsigned i=1;
while (i<emsa2BlockLen-1 && emsa2Block[i++] != 0xba)
if (emsa2Block[i-1] != 0xbb) // not valid padding
return DecodingResult();
assert(i==emsa2BlockLen-1 || emsa2Block[i-1]==0xba);
unsigned int outputLen = emsa2BlockLen - i;
output[0] = emsa2Block[0];
memcpy (output+1, emsa2Block+i, outputLen-1);
return DecodingResult(outputLen);
}
// *****************************************************************************
template <word r>
void RWFunction<r>::BERDecode(BufferedTransformation &bt)
{
BERSequenceDecoder seq(bt);
m_n.BERDecode(seq);
seq.MessageEnd();
}
template <word r>
void RWFunction<r>::DEREncode(BufferedTransformation &bt) const
{
DERSequenceEncoder seq(bt);
m_n.DEREncode(seq);
seq.MessageEnd();
}
template <word r>
Integer RWFunction<r>::ApplyFunction(const Integer &in) const
{
DoQuickSanityCheck();
Integer out = in.Squared()%m_n;
const word r2 = r/2;
const word r3a = (16 + 5 - r) % 16; // n%16 could be 5 or 13
const word r3b = (16 + 13 - r) % 16;
const word r4 = (8 + 5 - r/2) % 8; // n%8 == 5
switch (out % 16)
{
case r:
break;
case r2:
case r2+8:
out <<= 1;
break;
case r3a:
case r3b:
out.Negate();
out += m_n;
break;
case r4:
case r4+8:
out.Negate();
out += m_n;
out <<= 1;
break;
default:
out = Integer::Zero();
}
return out;
}
template <word r>
bool RWFunction<r>::Validate(RandomNumberGenerator &rng, unsigned int level) const
{
bool pass = true;
pass = pass && m_n > Integer::One() && m_n%8 == 5;
return pass;
}
template <word r>
bool RWFunction<r>::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
{
return GetValueHelper(this, name, valueType, pValue).Assignable()
CRYPTOPP_GET_FUNCTION_ENTRY(Modulus)
;
}
template <word r>
void RWFunction<r>::AssignFrom(const NameValuePairs &source)
{
AssignFromHelper(this, source)
CRYPTOPP_SET_FUNCTION_ENTRY(Modulus)
;
}
// *****************************************************************************
// private key operations:
// generate a random private key
template <word r>
void InvertibleRWFunction<r>::GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg)
{
int modulusSize = 2048;
alg.GetIntValue("ModulusSize", modulusSize) || alg.GetIntValue("KeySize", modulusSize);
if (modulusSize < 16)
throw InvalidArgument("InvertibleRWFunction: specified modulus length is too small");
const NameValuePairs &primeParam = MakeParametersForTwoPrimesOfEqualSize(modulusSize);
m_p.GenerateRandom(rng, CombinedNameValuePairs(primeParam, MakeParameters("EquivalentTo", 3)("Mod", 8)));
m_q.GenerateRandom(rng, CombinedNameValuePairs(primeParam, MakeParameters("EquivalentTo", 7)("Mod", 8)));
m_n = m_p * m_q;
m_u = m_q.InverseMod(m_p);
}
template <word r>
void InvertibleRWFunction<r>::BERDecode(BufferedTransformation &bt)
{
BERSequenceDecoder seq(bt);
m_n.BERDecode(seq);
m_p.BERDecode(seq);
m_q.BERDecode(seq);
m_u.BERDecode(seq);
seq.MessageEnd();
}
template <word r>
void InvertibleRWFunction<r>::DEREncode(BufferedTransformation &bt) const
{
DERSequenceEncoder seq(bt);
m_n.DEREncode(seq);
m_p.DEREncode(seq);
m_q.DEREncode(seq);
m_u.DEREncode(seq);
seq.MessageEnd();
}
template <word r>
Integer InvertibleRWFunction<r>::CalculateInverse(const Integer &in) const
{
DoQuickSanityCheck();
Integer cp=in%m_p, cq=in%m_q;
if (Jacobi(cp, m_p) * Jacobi(cq, m_q) != 1)
{
cp = cp%2 ? (cp+m_p) >> 1 : cp >> 1;
cq = cq%2 ? (cq+m_q) >> 1 : cq >> 1;
}
cp = ModularSquareRoot(cp, m_p);
cq = ModularSquareRoot(cq, m_q);
Integer out = CRT(cq, m_q, cp, m_p, m_u);
return STDMIN(out, m_n-out);
}
template <word r>
bool InvertibleRWFunction<r>::Validate(RandomNumberGenerator &rng, unsigned int level) const
{
bool pass = RWFunction<r>::Validate(rng, level);
pass = pass && m_p > Integer::One() && m_p%8 == 3 && m_p < m_n;
pass = pass && m_q > Integer::One() && m_q%8 == 7 && m_q < m_n;
pass = pass && m_u.IsPositive() && m_u < m_p;
if (level >= 1)
{
pass = pass && m_p * m_q == m_n;
pass = pass && m_u * m_q % m_p == 1;
}
if (level >= 2)
pass = pass && VerifyPrime(rng, m_p, level-2) && VerifyPrime(rng, m_q, level-2);
return pass;
}
template <word r>
bool InvertibleRWFunction<r>::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
{
return GetValueHelper<RWFunction<r> >(this, name, valueType, pValue).Assignable()
CRYPTOPP_GET_FUNCTION_ENTRY(Prime1)
CRYPTOPP_GET_FUNCTION_ENTRY(Prime2)
CRYPTOPP_GET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)
;
}
template <word r>
void InvertibleRWFunction<r>::AssignFrom(const NameValuePairs &source)
{
AssignFromHelper<RWFunction<r> >(this, source)
CRYPTOPP_SET_FUNCTION_ENTRY(Prime1)
CRYPTOPP_SET_FUNCTION_ENTRY(Prime2)
CRYPTOPP_SET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)
;
}
template class RWFunction<IFSSA_R>;
template class InvertibleRWFunction<IFSSA_R>;
NAMESPACE_END