1181 lines
43 KiB
C++
1181 lines
43 KiB
C++
// ppc_simd.h - written and placed in public domain by Jeffrey Walton
|
|
|
|
/// \file ppc_simd.h
|
|
/// \brief Support functions for PowerPC and vector operations
|
|
/// \details This header provides an agnostic interface into Clang, GCC
|
|
/// and IBM XL C/C++ compilers modulo their different built-in functions
|
|
/// for accessing vector intructions.
|
|
/// \details The abstractions are necesssary to support back to GCC 4.8 and
|
|
/// XLC 11 and 12. GCC 4.8 and 4.9 are still popular, and they are the
|
|
/// default compiler for GCC112, GCC118 and others on the compile farm.
|
|
/// Older IBM XL C/C++ compilers also experience it due to lack of
|
|
/// <tt>vec_xl</tt> and <tt>vec_xst</tt> support on some platforms. Modern
|
|
/// compilers provide best support and don't need many of the little hacks
|
|
/// below.
|
|
/// \details At Crypto++ 8.0 the various VectorFunc{Name} were renamed to
|
|
/// VecFunc{Name}. For example, VectorAnd was changed to VecAnd. The name
|
|
/// change helped consolidate two slightly different implementations.
|
|
/// \since Crypto++ 6.0, LLVM Clang compiler support since Crypto++ 8.0
|
|
|
|
// Use __ALTIVEC__, _ARCH_PWR7 and _ARCH_PWR8 when detecting actual availaibility
|
|
// of the feature for the source file being compiled. The preprocessor macros
|
|
// depend on compiler options like -maltivec; and not compiler versions.
|
|
|
|
#ifndef CRYPTOPP_PPC_CRYPTO_H
|
|
#define CRYPTOPP_PPC_CRYPTO_H
|
|
|
|
#include "config.h"
|
|
#include "misc.h"
|
|
|
|
#if defined(__ALTIVEC__)
|
|
# include <altivec.h>
|
|
# undef vector
|
|
# undef pixel
|
|
# undef bool
|
|
#endif
|
|
|
|
// IBM XLC on AIX does not define __CRYPTO__ like it should with -qarch=pwr8.
|
|
// Crypto is available in XLC 13.1 and above. More LLVM front-end goodness.
|
|
#if defined(_AIX) && defined(_ARCH_PWR8) && (__xlC__ >= 0xd01)
|
|
# undef __CRYPTO__
|
|
# define __CRYPTO__ 1
|
|
#endif
|
|
|
|
// Hack to detect early XLC compilers. XLC compilers for POWER7 use
|
|
// vec_xlw4 and vec_xstw4 (and ld2 variants); not vec_xl and vec_st.
|
|
// Some XLC compilers for POWER7 and above use vec_xl and vec_xst.
|
|
// The way to tell the difference is, XLC compilers version 13.0 and
|
|
// earlier use vec_xlw4 and vec_xstw4. XLC compilers 13.1 and later
|
|
// are use vec_xl and vec_xst. The open question is, how to handle
|
|
// early Clang compilers for POWER7. We know the latest Clang
|
|
// compilers support vec_xl and vec_xst. Also see
|
|
// https://www-01.ibm.com/support/docview.wss?uid=swg21683541.
|
|
|
|
#if defined(__xlc__) && (__xlc__ < 0x0d01)
|
|
# define __early_xlc__ 1
|
|
#endif
|
|
#if defined(__xlC__) && (__xlC__ < 0x0d01)
|
|
# define __early_xlC__ 1
|
|
#endif
|
|
|
|
// VecLoad_ALTIVEC and VecStore_ALTIVEC are
|
|
// too noisy on modern compilers
|
|
#if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE
|
|
# pragma GCC diagnostic push
|
|
# pragma GCC diagnostic ignored "-Wdeprecated"
|
|
#endif
|
|
|
|
NAMESPACE_BEGIN(CryptoPP)
|
|
|
|
#if defined(__ALTIVEC__) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
|
|
|
|
/// \brief Vector of 8-bit elements
|
|
typedef __vector unsigned char uint8x16_p;
|
|
/// \brief Vector of 16-bit elements
|
|
typedef __vector unsigned short uint16x8_p;
|
|
/// \brief Vector of 32-bit elements
|
|
typedef __vector unsigned int uint32x4_p;
|
|
|
|
#if defined(_ARCH_PWR8) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
|
|
/// \brief Vector of 64-bit elements
|
|
/// \details uint64x2_p is available on POWER8 and above.
|
|
typedef __vector unsigned long long uint64x2_p;
|
|
#endif // _ARCH_PWR8
|
|
|
|
/// \brief Reverse bytes in a vector
|
|
/// \tparam T vector type
|
|
/// \param data the vector
|
|
/// \returns vector
|
|
/// \details VecReverse() reverses the bytes in a vector
|
|
/// \since Crypto++ 6.0
|
|
template <class T>
|
|
inline T VecReverse(const T data)
|
|
{
|
|
const uint8x16_p mask = {15,14,13,12, 11,10,9,8, 7,6,5,4, 3,2,1,0};
|
|
return (T)vec_perm(data, data, mask);
|
|
}
|
|
|
|
//////////////////////// Loads ////////////////////////
|
|
|
|
/// \brief Loads a vector from a byte array
|
|
/// \param src the byte array
|
|
/// \details Loads a vector in native endian format from a byte array.
|
|
/// \details VecLoad_ALTIVEC() uses <tt>vec_ld</tt> if the effective address
|
|
/// of <tt>dest</tt> is aligned, and uses <tt>vec_lvsl</tt> and <tt>vec_perm</tt>
|
|
/// otherwise.
|
|
/// <tt>vec_lvsl</tt> and <tt>vec_perm</tt> are relatively expensive so you should
|
|
/// provide aligned memory adresses.
|
|
/// \details VecLoad_ALTIVEC() is used automatically when POWER7 or above
|
|
/// and unaligned loads is not available.
|
|
/// \note VecLoad does not require an aligned array.
|
|
/// \since Crypto++ 6.0
|
|
inline uint32x4_p VecLoad_ALTIVEC(const byte src[16])
|
|
{
|
|
if (IsAlignedOn(src, 16))
|
|
{
|
|
return (uint32x4_p)vec_ld(0, src);
|
|
}
|
|
else
|
|
{
|
|
// http://www.nxp.com/docs/en/reference-manual/ALTIVECPEM.pdf
|
|
const uint8x16_p perm = vec_lvsl(0, src);
|
|
const uint8x16_p low = vec_ld(0, src);
|
|
const uint8x16_p high = vec_ld(15, src);
|
|
return (uint32x4_p)vec_perm(low, high, perm);
|
|
}
|
|
}
|
|
|
|
/// \brief Loads a vector from a byte array
|
|
/// \param src the byte array
|
|
/// \param off offset into the src byte array
|
|
/// \details Loads a vector in native endian format from a byte array.
|
|
/// \details VecLoad_ALTIVEC() uses <tt>vec_ld</tt> if the effective address
|
|
/// of <tt>dest</tt> is aligned, and uses <tt>vec_lvsl</tt> and <tt>vec_perm</tt>
|
|
/// otherwise.
|
|
/// <tt>vec_lvsl</tt> and <tt>vec_perm</tt> are relatively expensive so you should
|
|
/// provide aligned memory adresses.
|
|
/// \note VecLoad does not require an aligned array.
|
|
/// \since Crypto++ 6.0
|
|
inline uint32x4_p VecLoad_ALTIVEC(int off, const byte src[16])
|
|
{
|
|
if (IsAlignedOn(src, 16))
|
|
{
|
|
return (uint32x4_p)vec_ld(off, src);
|
|
}
|
|
else
|
|
{
|
|
// http://www.nxp.com/docs/en/reference-manual/ALTIVECPEM.pdf
|
|
const uint8x16_p perm = vec_lvsl(off, src);
|
|
const uint8x16_p low = vec_ld(off, src);
|
|
const uint8x16_p high = vec_ld(15, src);
|
|
return (uint32x4_p)vec_perm(low, high, perm);
|
|
}
|
|
}
|
|
|
|
/// \brief Loads a vector from a byte array
|
|
/// \param src the byte array
|
|
/// \details VecLoad loads a vector in from a byte array.
|
|
/// \details VecLoad uses POWER7's <tt>vec_xl</tt> or
|
|
/// <tt>vec_vsx_ld</tt> if available. The instructions do not require
|
|
/// aligned effective memory addresses. VecLoad_ALTIVEC() is used if POWER7
|
|
/// is not available. VecLoad_ALTIVEC() can be relatively expensive if
|
|
/// extra instructions are required to fix up unaligned memory
|
|
/// addresses.
|
|
/// \note VecLoad does not require an aligned array.
|
|
/// \since Crypto++ 6.0
|
|
inline uint32x4_p VecLoad(const byte src[16])
|
|
{
|
|
#if defined(_ARCH_PWR7)
|
|
# if defined(__early_xlc__) || defined(__early_xlC__)
|
|
return (uint32x4_p)vec_xlw4(0, (byte*)src);
|
|
# elif defined(__xlc__) || defined(__xlC__) || defined(__clang__)
|
|
return (uint32x4_p)vec_xl(0, (byte*)src);
|
|
# else
|
|
return (uint32x4_p)vec_vsx_ld(0, (byte*)src);
|
|
# endif
|
|
#else
|
|
return VecLoad_ALTIVEC(src);
|
|
#endif
|
|
}
|
|
|
|
/// \brief Loads a vector from a word array
|
|
/// \param src the word array
|
|
/// \param off offset into the word array
|
|
/// \details VecLoad loads a vector in from a word array.
|
|
/// \details VecLoad uses POWER7's <tt>vec_xl</tt> or
|
|
/// <tt>vec_vsx_ld</tt> if available. The instructions do not require
|
|
/// aligned effective memory addresses. VecLoad_ALTIVEC() is used if POWER7
|
|
/// is not available. VecLoad_ALTIVEC() can be relatively expensive if
|
|
/// extra instructions are required to fix up unaligned memory
|
|
/// addresses.
|
|
/// \note VecLoad does not require an aligned array.
|
|
/// \since Crypto++ 6.0
|
|
inline uint32x4_p VecLoad(int off, const byte src[16])
|
|
{
|
|
#if defined(_ARCH_PWR7)
|
|
# if defined(__early_xlc__) || defined(__early_xlC__)
|
|
return (uint32x4_p)vec_xlw4(off, (byte*)src);
|
|
# elif defined(__xlc__) || defined(__xlC__) || defined(__clang__)
|
|
return (uint32x4_p)vec_xl(off, (byte*)src);
|
|
# else
|
|
return (uint32x4_p)vec_vsx_ld(off, (byte*)src);
|
|
# endif
|
|
#else
|
|
return VecLoad_ALTIVEC(off, src);
|
|
#endif
|
|
}
|
|
|
|
/// \brief Loads a vector from a word array
|
|
/// \param src the word array
|
|
/// \details VecLoad loads a vector in from a word array.
|
|
/// \details VecLoad uses POWER7's <tt>vec_xl</tt> or
|
|
/// <tt>vec_vsx_ld</tt> if available. The instructions do not require
|
|
/// aligned effective memory addresses. VecLoad_ALTIVEC() is used if POWER7
|
|
/// is not available. VecLoad_ALTIVEC() can be relatively expensive if
|
|
/// extra instructions are required to fix up unaligned memory
|
|
/// addresses.
|
|
/// \note VecLoad does not require an aligned array.
|
|
/// \since Crypto++ 8.0
|
|
inline uint32x4_p VecLoad(const word32 src[4])
|
|
{
|
|
return VecLoad((const byte*)src);
|
|
}
|
|
|
|
/// \brief Loads a vector from a word array
|
|
/// \param src the word array
|
|
/// \param off offset into the word array
|
|
/// \details VecLoad loads a vector in from a word array.
|
|
/// \details VecLoad uses POWER7's <tt>vec_xl</tt> or
|
|
/// <tt>vec_vsx_ld</tt> if available. The instructions do not require
|
|
/// aligned effective memory addresses. VecLoad_ALTIVEC() is used if POWER7
|
|
/// is not available. VecLoad_ALTIVEC() can be relatively expensive if
|
|
/// extra instructions are required to fix up unaligned memory
|
|
/// addresses.
|
|
/// \note VecLoad does not require an aligned array.
|
|
/// \since Crypto++ 8.0
|
|
inline uint32x4_p VecLoad(int off, const word32 src[4])
|
|
{
|
|
return VecLoad(off, (const byte*)src);
|
|
}
|
|
|
|
#if defined(_ARCH_PWR8) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
|
|
|
|
/// \brief Loads a vector from a word array
|
|
/// \param src the word array
|
|
/// \details VecLoad loads a vector in from a word array.
|
|
/// \details VecLoad uses POWER7's <tt>vec_xl</tt> or
|
|
/// <tt>vec_vsx_ld</tt> if available. The instructions do not require
|
|
/// aligned effective memory addresses. VecLoad_ALTIVEC() is used if POWER7
|
|
/// is not available. VecLoad_ALTIVEC() can be relatively expensive if
|
|
/// extra instructions are required to fix up unaligned memory
|
|
/// addresses.
|
|
/// \details VecLoad with 64-bit elements is available on POWER8 and above.
|
|
/// \note VecLoad does not require an aligned array.
|
|
/// \since Crypto++ 8.0
|
|
inline uint64x2_p VecLoad(const word64 src[2])
|
|
{
|
|
return (uint64x2_p)VecLoad((const byte*)src);
|
|
}
|
|
|
|
/// \brief Loads a vector from a byte array
|
|
/// \param src the word array
|
|
/// \param off offset into the word array
|
|
/// \details VecLoad loads a vector in from a word array.
|
|
/// \details VecLoad uses POWER7's <tt>vec_xl</tt> or
|
|
/// <tt>vec_vsx_ld</tt> if available. The instructions do not require
|
|
/// aligned effective memory addresses. VecLoad_ALTIVEC() is used if POWER7
|
|
/// is not available. VecLoad_ALTIVEC() can be relatively expensive if
|
|
/// extra instructions are required to fix up unaligned memory
|
|
/// addresses.
|
|
/// \details VecLoad with 64-bit elements is available on POWER8 and above.
|
|
/// \note VecLoad does not require an aligned array.
|
|
/// \since Crypto++ 8.0
|
|
inline uint64x2_p VecLoad(int off, const word64 src[2])
|
|
{
|
|
return (uint64x2_p)VecLoad(off, (const byte*)src);
|
|
}
|
|
|
|
#endif // _ARCH_PWR8
|
|
|
|
/// \brief Loads a vector from a byte array
|
|
/// \param src the byte array
|
|
/// \details VecLoadBE loads a vector in from a byte array. VecLoadBE
|
|
/// will reverse all bytes in the array on a little endian system.
|
|
/// \details VecLoadBE uses POWER7's <tt>vec_xl</tt> or
|
|
/// <tt>vec_vsx_ld</tt> if available. The instructions do not require
|
|
/// aligned effective memory addresses. VecLoad_ALTIVEC() is used if POWER7
|
|
/// is not available. VecLoad_ALTIVEC() can be relatively expensive if
|
|
/// extra instructions are required to fix up unaligned memory
|
|
/// addresses.
|
|
/// \note VecLoadBE does not require an aligned array.
|
|
/// \since Crypto++ 6.0
|
|
inline uint32x4_p VecLoadBE(const byte src[16])
|
|
{
|
|
#if defined(_ARCH_PWR7)
|
|
# if defined(__early_xlc__) || defined(__early_xlC__)
|
|
# if (CRYPTOPP_BIG_ENDIAN)
|
|
return (uint32x4_p)vec_xlw4(0, (byte*)src);
|
|
# else
|
|
return (uint32x4_p)VecReverse(vec_xlw4(0, (byte*)src));
|
|
# endif
|
|
# elif defined(__xlc__) || defined(__xlC__) || defined(__clang__)
|
|
return (uint32x4_p)vec_xl_be(0, (byte*)src);
|
|
# else
|
|
# if (CRYPTOPP_BIG_ENDIAN)
|
|
return (uint32x4_p)vec_vsx_ld(0, (byte*)src);
|
|
# else
|
|
return (uint32x4_p)VecReverse(vec_vsx_ld(0, (byte*)src));
|
|
# endif
|
|
# endif
|
|
#else // _ARCH_PWR7
|
|
# if (CRYPTOPP_BIG_ENDIAN)
|
|
return (uint32x4_p)VecLoad((const byte*)src);
|
|
# else
|
|
return (uint32x4_p)VecReverse(VecLoad((const byte*)src));
|
|
# endif
|
|
#endif // _ARCH_PWR7
|
|
}
|
|
|
|
/// \brief Loads a vector from a byte array
|
|
/// \param src the byte array
|
|
/// \param off offset into the src byte array
|
|
/// \details VecLoadBE loads a vector in from a byte array. VecLoadBE
|
|
/// will reverse all bytes in the array on a little endian system.
|
|
/// \details VecLoadBE uses POWER7's <tt>vec_xl</tt> or
|
|
/// <tt>vec_vsx_ld</tt> if available. The instructions do not require
|
|
/// aligned effective memory addresses. VecLoad_ALTIVEC() is used if POWER7
|
|
/// is not available. VecLoad_ALTIVEC() can be relatively expensive if
|
|
/// extra instructions are required to fix up unaligned memory
|
|
/// addresses.
|
|
/// \note VecLoadBE does not require an aligned array.
|
|
/// \since Crypto++ 6.0
|
|
inline uint32x4_p VecLoadBE(int off, const byte src[16])
|
|
{
|
|
#if defined(_ARCH_PWR7)
|
|
# if defined(__early_xlc__) || defined(__early_xlC__)
|
|
# if (CRYPTOPP_BIG_ENDIAN)
|
|
return (uint32x4_p)vec_xlw4(off, (byte*)src);
|
|
# else
|
|
return (uint32x4_p)VecReverse(vec_xlw4(off, (byte*)src));
|
|
# endif
|
|
# elif defined(__xlc__) || defined(__xlC__) || defined(__clang__)
|
|
return (uint32x4_p)vec_xl_be(off, (byte*)src);
|
|
# else
|
|
# if (CRYPTOPP_BIG_ENDIAN)
|
|
return (uint32x4_p)vec_vsx_ld(off, (byte*)src);
|
|
# else
|
|
return (uint32x4_p)VecReverse(vec_vsx_ld(off, (byte*)src));
|
|
# endif
|
|
# endif
|
|
#else // _ARCH_PWR7
|
|
# if (CRYPTOPP_BIG_ENDIAN)
|
|
return (uint32x4_p)VecLoad(off, (const byte*)src);
|
|
# else
|
|
return (uint32x4_p)VecReverse(VecLoad(off, (const byte*)src));
|
|
# endif
|
|
#endif // _ARCH_PWR7
|
|
}
|
|
|
|
//////////////////////// Stores ////////////////////////
|
|
|
|
/// \brief Stores a vector to a byte array
|
|
/// \tparam T vector type
|
|
/// \param data the vector
|
|
/// \param dest the byte array
|
|
/// \details Stores a vector in native endian format to a byte array.
|
|
/// \details VecStore_ALTIVEC() uses <tt>vec_st</tt> if the effective address
|
|
/// of <tt>dest</tt> is aligned, and uses <tt>vec_ste</tt> otherwise.
|
|
/// <tt>vec_ste</tt> is relatively expensive so you should provide aligned
|
|
/// memory adresses.
|
|
/// \details VecStore_ALTIVEC() is used automatically when POWER7 or above
|
|
/// and unaligned loads is not available.
|
|
/// \note VecStore does not require an aligned array.
|
|
/// \since Crypto++ 8.0
|
|
template<class T>
|
|
inline void VecStore_ALTIVEC(const T data, byte dest[16])
|
|
{
|
|
if (IsAlignedOn(dest, 16))
|
|
{
|
|
vec_st((uint8x16_p)data, 0, dest);
|
|
}
|
|
else
|
|
{
|
|
// http://www.nxp.com/docs/en/reference-manual/ALTIVECPEM.pdf
|
|
uint8x16_p perm = (uint8x16_p)vec_perm(data, data, vec_lvsr(0, dest));
|
|
vec_ste((uint8x16_p) perm, 0, (unsigned char*) dest);
|
|
vec_ste((uint16x8_p) perm, 1, (unsigned short*)dest);
|
|
vec_ste((uint32x4_p) perm, 3, (unsigned int*) dest);
|
|
vec_ste((uint32x4_p) perm, 4, (unsigned int*) dest);
|
|
vec_ste((uint32x4_p) perm, 8, (unsigned int*) dest);
|
|
vec_ste((uint32x4_p) perm, 12, (unsigned int*) dest);
|
|
vec_ste((uint16x8_p) perm, 14, (unsigned short*)dest);
|
|
vec_ste((uint8x16_p) perm, 15, (unsigned char*) dest);
|
|
}
|
|
}
|
|
|
|
/// \brief Stores a vector to a byte array
|
|
/// \tparam T vector type
|
|
/// \param data the vector
|
|
/// \param off the byte offset into the array
|
|
/// \param dest the byte array
|
|
/// \details Stores a vector in native endian format to a byte array.
|
|
/// \details VecStore_ALTIVEC() uses <tt>vec_st</tt> if the effective address
|
|
/// of <tt>dest</tt> is aligned, and uses <tt>vec_ste</tt> otherwise.
|
|
/// <tt>vec_ste</tt> is relatively expensive so you should provide aligned
|
|
/// memory adresses.
|
|
/// \details VecStore_ALTIVEC() is used automatically when POWER7 or above
|
|
/// and unaligned loads is not available.
|
|
/// \note VecStore does not require an aligned array.
|
|
/// \since Crypto++ 8.0
|
|
template<class T>
|
|
inline void VecStore_ALTIVEC(const T data, int off, byte dest[16])
|
|
{
|
|
if (IsAlignedOn(dest, 16))
|
|
{
|
|
vec_st((uint8x16_p)data, off, dest);
|
|
}
|
|
else
|
|
{
|
|
// http://www.nxp.com/docs/en/reference-manual/ALTIVECPEM.pdf
|
|
uint8x16_p perm = (uint8x16_p)vec_perm(data, data, vec_lvsr(off, dest));
|
|
vec_ste((uint8x16_p) perm, 0, (unsigned char*) dest);
|
|
vec_ste((uint16x8_p) perm, 1, (unsigned short*)dest);
|
|
vec_ste((uint32x4_p) perm, 3, (unsigned int*) dest);
|
|
vec_ste((uint32x4_p) perm, 4, (unsigned int*) dest);
|
|
vec_ste((uint32x4_p) perm, 8, (unsigned int*) dest);
|
|
vec_ste((uint32x4_p) perm, 12, (unsigned int*) dest);
|
|
vec_ste((uint16x8_p) perm, 14, (unsigned short*)dest);
|
|
vec_ste((uint8x16_p) perm, 15, (unsigned char*) dest);
|
|
}
|
|
}
|
|
|
|
/// \brief Stores a vector to a byte array
|
|
/// \tparam T vector type
|
|
/// \param data the vector
|
|
/// \param dest the byte array
|
|
/// \details VecStore stores a vector to a byte array.
|
|
/// \details VecStore uses POWER7's <tt>vec_xst</tt> or
|
|
/// <tt>vec_vsx_st</tt> if available. The instructions do not require
|
|
/// aligned effective memory addresses. VecStore_ALTIVEC() is used if POWER7
|
|
/// is not available. VecStore_ALTIVEC() can be relatively expensive if
|
|
/// extra instructions are required to fix up unaligned memory
|
|
/// addresses.
|
|
/// \note VecStore does not require an aligned array.
|
|
/// \since Crypto++ 6.0
|
|
template<class T>
|
|
inline void VecStore(const T data, byte dest[16])
|
|
{
|
|
#if defined(_ARCH_PWR7)
|
|
# if defined(__early_xlc__) || defined(__early_xlC__)
|
|
vec_xstw4((uint8x16_p)data, 0, (byte*)dest);
|
|
# elif defined(__xlc__) || defined(__xlC__) || defined(__clang__)
|
|
vec_xst((uint8x16_p)data, 0, (byte*)dest);
|
|
# else
|
|
vec_vsx_st((uint8x16_p)data, 0, (byte*)dest);
|
|
# endif
|
|
#else
|
|
VecStore_ALTIVEC((uint8x16_p)data, 0, (byte*)dest);
|
|
#endif
|
|
}
|
|
|
|
/// \brief Stores a vector to a byte array
|
|
/// \tparam T vector type
|
|
/// \param data the vector
|
|
/// \param off the byte offset into the array
|
|
/// \param dest the byte array
|
|
/// \details VecStore stores a vector to a byte array.
|
|
/// \details VecStore uses POWER7's <tt>vec_xst</tt> or
|
|
/// <tt>vec_vsx_st</tt> if available. The instructions do not require
|
|
/// aligned effective memory addresses. VecStore_ALTIVEC() is used if POWER7
|
|
/// is not available. VecStore_ALTIVEC() can be relatively expensive if
|
|
/// extra instructions are required to fix up unaligned memory
|
|
/// addresses.
|
|
/// \note VecStore does not require an aligned array.
|
|
/// \since Crypto++ 6.0
|
|
template<class T>
|
|
inline void VecStore(const T data, int off, byte dest[16])
|
|
{
|
|
#if defined(_ARCH_PWR7)
|
|
# if defined(__early_xlc__) || defined(__early_xlC__)
|
|
vec_xstw4((uint8x16_p)data, off, (byte*)dest);
|
|
# elif defined(__xlc__) || defined(__xlC__) || defined(__clang__)
|
|
vec_xst((uint8x16_p)data, off, (byte*)dest);
|
|
# else
|
|
vec_vsx_st((uint8x16_p)data, off, (byte*)dest);
|
|
# endif
|
|
#else
|
|
VecStore_ALTIVEC((uint8x16_p)data, off, (byte*)dest);
|
|
#endif
|
|
}
|
|
|
|
/// \brief Stores a vector to a word array
|
|
/// \tparam T vector type
|
|
/// \param data the vector
|
|
/// \param dest the word array
|
|
/// \details VecStore stores a vector to a word array.
|
|
/// \details VecStore uses POWER7's <tt>vec_xst</tt> or
|
|
/// <tt>vec_vsx_st</tt> if available. The instructions do not require
|
|
/// aligned effective memory addresses. VecStore_ALTIVEC() is used if POWER7
|
|
/// is not available. VecStore_ALTIVEC() can be relatively expensive if
|
|
/// extra instructions are required to fix up unaligned memory
|
|
/// addresses.
|
|
/// \note VecStore does not require an aligned array.
|
|
/// \since Crypto++ 8.0
|
|
template<class T>
|
|
inline void VecStore(const T data, word32 dest[4])
|
|
{
|
|
VecStore((uint8x16_p)data, 0, (byte*)dest);
|
|
}
|
|
|
|
/// \brief Stores a vector to a word array
|
|
/// \tparam T vector type
|
|
/// \param data the vector
|
|
/// \param off the byte offset into the array
|
|
/// \param dest the word array
|
|
/// \details VecStore stores a vector to a word array.
|
|
/// \details VecStore uses POWER7's <tt>vec_xst</tt> or
|
|
/// <tt>vec_vsx_st</tt> if available. The instructions do not require
|
|
/// aligned effective memory addresses. VecStore_ALTIVEC() is used if POWER7
|
|
/// is not available. VecStore_ALTIVEC() can be relatively expensive if
|
|
/// extra instructions are required to fix up unaligned memory
|
|
/// addresses.
|
|
/// \note VecStore does not require an aligned array.
|
|
/// \since Crypto++ 8.0
|
|
template<class T>
|
|
inline void VecStore(const T data, int off, word32 dest[4])
|
|
{
|
|
VecStore((uint8x16_p)data, off, (byte*)dest);
|
|
}
|
|
|
|
#if defined(_ARCH_PWR8) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
|
|
|
|
/// \brief Stores a vector to a word array
|
|
/// \tparam T vector type
|
|
/// \param data the vector
|
|
/// \param dest the word array
|
|
/// \details VecStore stores a vector to a word array.
|
|
/// \details VecStore uses POWER7's <tt>vec_xst</tt> or
|
|
/// <tt>vec_vsx_st</tt> if available. The instructions do not require
|
|
/// aligned effective memory addresses. VecStore_ALTIVEC() is used if POWER7
|
|
/// is not available. VecStore_ALTIVEC() can be relatively expensive if
|
|
/// extra instructions are required to fix up unaligned memory
|
|
/// addresses.
|
|
/// \details VecStore with 64-bit elements is available on POWER8 and above.
|
|
/// \note VecStore does not require an aligned array.
|
|
/// \since Crypto++ 8.0
|
|
template<class T>
|
|
inline void VecStore(const T data, word64 dest[2])
|
|
{
|
|
VecStore((uint8x16_p)data, 0, (byte*)dest);
|
|
}
|
|
|
|
/// \brief Stores a vector to a word array
|
|
/// \tparam T vector type
|
|
/// \param data the vector
|
|
/// \param off the byte offset into the array
|
|
/// \param dest the word array
|
|
/// \details VecStore stores a vector to a word array.
|
|
/// \details VecStore uses POWER7's <tt>vec_xst</tt> or
|
|
/// <tt>vec_vsx_st</tt> if available. The instructions do not require
|
|
/// aligned effective memory addresses. VecStore_ALTIVEC() is used if POWER7
|
|
/// is not available. VecStore_ALTIVEC() can be relatively expensive if
|
|
/// extra instructions are required to fix up unaligned memory
|
|
/// addresses.
|
|
/// \details VecStore with 64-bit elements is available on POWER8 and above.
|
|
/// \note VecStore does not require an aligned array.
|
|
/// \since Crypto++ 8.0
|
|
template<class T>
|
|
inline void VecStore(const T data, int off, word64 dest[2])
|
|
{
|
|
VecStore((uint8x16_p)data, off, (byte*)dest);
|
|
}
|
|
|
|
#endif // _ARCH_PWR8
|
|
|
|
/// \brief Stores a vector to a byte array
|
|
/// \tparam T vector type
|
|
/// \param src the vector
|
|
/// \param dest the byte array
|
|
/// \details VecStoreBE stores a vector to a byte array. VecStoreBE
|
|
/// will reverse all bytes in the array on a little endian system.
|
|
/// \details VecStoreBE uses POWER7's <tt>vec_xst</tt> or
|
|
/// <tt>vec_vsx_st</tt> if available. The instructions do not require
|
|
/// aligned effective memory addresses. VecStore_ALTIVEC() is used if POWER7
|
|
/// is not available. VecStore_ALTIVEC() can be relatively expensive if
|
|
/// extra instructions are required to fix up unaligned memory
|
|
/// addresses.
|
|
/// \note VecStore does not require an aligned array.
|
|
/// \since Crypto++ 6.0
|
|
template <class T>
|
|
inline void VecStoreBE(const T data, byte dest[16])
|
|
{
|
|
#if defined(_ARCH_PWR7)
|
|
# if defined(__early_xlc__) || defined(__early_xlC__)
|
|
# if (CRYPTOPP_BIG_ENDIAN)
|
|
vec_xstw4((uint8x16_p)data, 0, (byte*)dest);
|
|
# else
|
|
vec_xstw4((uint8x16_p)VecReverse(data), 0, (byte*)dest);
|
|
# endif
|
|
# elif defined(__xlc__) || defined(__xlC__) || defined(__clang__)
|
|
vec_xst_be((uint8x16_p)data, 0, (byte*)dest);
|
|
# else
|
|
# if (CRYPTOPP_BIG_ENDIAN)
|
|
vec_vsx_st((uint8x16_p)data, 0, (byte*)dest);
|
|
# else
|
|
vec_vsx_st((uint8x16_p)VecReverse(data), 0, (byte*)dest);
|
|
# endif
|
|
# endif
|
|
#else // _ARCH_PWR7
|
|
# if (CRYPTOPP_BIG_ENDIAN)
|
|
VecStore_ALTIVEC((uint8x16_p)data, 0, (byte*)dest);
|
|
# else
|
|
VecStore_ALTIVEC((uint8x16_p)VecReverse(data), 0, (byte*)dest);
|
|
# endif
|
|
#endif // _ARCH_PWR7
|
|
}
|
|
|
|
/// \brief Stores a vector to a byte array
|
|
/// \tparam T vector type
|
|
/// \param src the vector
|
|
/// \param off offset into the dest byte array
|
|
/// \param dest the byte array
|
|
/// \details VecStoreBE stores a vector to a byte array. VecStoreBE
|
|
/// will reverse all bytes in the array on a little endian system.
|
|
/// \details VecStoreBE uses POWER7's <tt>vec_xst</tt> or
|
|
/// <tt>vec_vsx_st</tt> if available. The instructions do not require
|
|
/// aligned effective memory addresses. VecStore_ALTIVEC() is used if POWER7
|
|
/// is not available. VecStore_ALTIVEC() can be relatively expensive if
|
|
/// extra instructions are required to fix up unaligned memory
|
|
/// addresses.
|
|
/// \note VecStore does not require an aligned array.
|
|
/// \since Crypto++ 6.0
|
|
template <class T>
|
|
inline void VecStoreBE(const T data, int off, byte dest[16])
|
|
{
|
|
#if defined(_ARCH_PWR7)
|
|
# if defined(__early_xlc__) || defined(__early_xlC__)
|
|
# if (CRYPTOPP_BIG_ENDIAN)
|
|
vec_xstw4((uint8x16_p)data, off, (byte*)dest);
|
|
# else
|
|
vec_xstw4((uint8x16_p)VecReverse(data), off, (byte*)dest);
|
|
# endif
|
|
# elif defined(__xlc__) || defined(__xlC__) || defined(__clang__)
|
|
vec_xst_be((uint8x16_p)data, off, (byte*)dest);
|
|
# else
|
|
# if (CRYPTOPP_BIG_ENDIAN)
|
|
vec_vsx_st((uint8x16_p)data, off, (byte*)dest);
|
|
# else
|
|
vec_vsx_st((uint8x16_p)VecReverse(data), off, (byte*)dest);
|
|
# endif
|
|
# endif
|
|
#else // _ARCH_PWR7
|
|
# if (CRYPTOPP_BIG_ENDIAN)
|
|
VecStore_ALTIVEC((uint8x16_p)data, off, (byte*)dest);
|
|
# else
|
|
VecStore_ALTIVEC((uint8x16_p)VecReverse(data), off, (byte*)dest);
|
|
# endif
|
|
#endif // _ARCH_PWR7
|
|
}
|
|
|
|
//////////////////////// Miscellaneous ////////////////////////
|
|
|
|
/// \brief Permutes a vector
|
|
/// \tparam T1 vector type
|
|
/// \tparam T2 vector type
|
|
/// \param vec the vector
|
|
/// \param mask vector mask
|
|
/// \returns vector
|
|
/// \details VecPermute returns a new vector from vec based on
|
|
/// mask. mask is an uint8x16_p type vector. The return
|
|
/// vector is the same type as vec.
|
|
/// \since Crypto++ 6.0
|
|
template <class T1, class T2>
|
|
inline T1 VecPermute(const T1 vec, const T2 mask)
|
|
{
|
|
return (T1)vec_perm(vec, vec, (uint8x16_p)mask);
|
|
}
|
|
|
|
/// \brief Permutes two vectors
|
|
/// \tparam T1 vector type
|
|
/// \tparam T2 vector type
|
|
/// \param vec1 the first vector
|
|
/// \param vec2 the second vector
|
|
/// \param mask vector mask
|
|
/// \returns vector
|
|
/// \details VecPermute returns a new vector from vec1 and vec2
|
|
/// based on mask. mask is an uint8x16_p type vector. The return
|
|
/// vector is the same type as vec1.
|
|
/// \since Crypto++ 6.0
|
|
template <class T1, class T2>
|
|
inline T1 VecPermute(const T1 vec1, const T1 vec2, const T2 mask)
|
|
{
|
|
return (T1)vec_perm(vec1, vec2, (uint8x16_p)mask);
|
|
}
|
|
|
|
/// \brief AND two vectors
|
|
/// \tparam T1 vector type
|
|
/// \tparam T2 vector type
|
|
/// \param vec1 the first vector
|
|
/// \param vec2 the second vector
|
|
/// \returns vector
|
|
/// \details VecAnd returns a new vector from vec1 and vec2. The return
|
|
/// vector is the same type as vec1.
|
|
/// \since Crypto++ 6.0
|
|
template <class T1, class T2>
|
|
inline T1 VecAnd(const T1 vec1, const T2 vec2)
|
|
{
|
|
return (T1)vec_and(vec1, (T1)vec2);
|
|
}
|
|
|
|
/// \brief OR two vectors
|
|
/// \tparam T1 vector type
|
|
/// \tparam T2 vector type
|
|
/// \param vec1 the first vector
|
|
/// \param vec2 the second vector
|
|
/// \returns vector
|
|
/// \details VecOr returns a new vector from vec1 and vec2. The return
|
|
/// vector is the same type as vec1.
|
|
/// \since Crypto++ 6.0
|
|
template <class T1, class T2>
|
|
inline T1 VecOr(const T1 vec1, const T2 vec2)
|
|
{
|
|
return (T1)vec_or(vec1, (T1)vec2);
|
|
}
|
|
|
|
/// \brief XOR two vectors
|
|
/// \tparam T1 vector type
|
|
/// \tparam T2 vector type
|
|
/// \param vec1 the first vector
|
|
/// \param vec2 the second vector
|
|
/// \returns vector
|
|
/// \details VecXor returns a new vector from vec1 and vec2. The return
|
|
/// vector is the same type as vec1.
|
|
/// \since Crypto++ 6.0
|
|
template <class T1, class T2>
|
|
inline T1 VecXor(const T1 vec1, const T2 vec2)
|
|
{
|
|
return (T1)vec_xor(vec1, (T1)vec2);
|
|
}
|
|
|
|
/// \brief Add two vectors
|
|
/// \tparam T1 vector type
|
|
/// \tparam T2 vector type
|
|
/// \param vec1 the first vector
|
|
/// \param vec2 the second vector
|
|
/// \returns vector
|
|
/// \details VecAdd returns a new vector from vec1 and vec2.
|
|
/// vec2 is cast to the same type as vec1. The return vector
|
|
/// is the same type as vec1.
|
|
/// \since Crypto++ 6.0
|
|
template <class T1, class T2>
|
|
inline T1 VecAdd(const T1 vec1, const T2 vec2)
|
|
{
|
|
return (T1)vec_add(vec1, (T1)vec2);
|
|
}
|
|
|
|
/// \brief Subtract two vectors
|
|
/// \tparam T1 vector type
|
|
/// \tparam T2 vector type
|
|
/// \param vec1 the first vector
|
|
/// \param vec2 the second vector
|
|
/// \details VecSub returns a new vector from vec1 and vec2.
|
|
/// vec2 is cast to the same type as vec1. The return vector
|
|
/// is the same type as vec1.
|
|
/// \since Crypto++ 6.0
|
|
template <class T1, class T2>
|
|
inline T1 VecSub(const T1 vec1, const T2 vec2)
|
|
{
|
|
return (T1)vec_sub(vec1, (T1)vec2);
|
|
}
|
|
|
|
/// \brief Add two vectors
|
|
/// \tparam T1 vector type
|
|
/// \tparam T2 vector type
|
|
/// \param vec1 the first vector
|
|
/// \param vec2 the second vector
|
|
/// \returns vector
|
|
/// \details VecAdd64 returns a new vector from vec1 and vec2.
|
|
/// vec1 and vec2 are added as if uint64x2_p vectors. On POWER7
|
|
/// and below VecAdd64 manages the carries from two elements in
|
|
/// a uint32x4_p vector.
|
|
/// \since Crypto++ 8.0
|
|
inline uint32x4_p VecAdd64(const uint32x4_p& vec1, const uint32x4_p& vec2)
|
|
{
|
|
#if defined(_ARCH_PWR8)
|
|
return (uint32x4_p)vec_add((uint64x2_p)vec1, (uint64x2_p)vec2);
|
|
#else
|
|
// The carry mask selects carries from elements 1 and 3 and sets remaining
|
|
// elements to 0. The mask also shifts the carried values left by 4 bytes
|
|
// so the carries are added to elements 0 and 2.
|
|
const uint8x16_p cmask = {4,5,6,7, 16,16,16,16, 12,13,14,15, 16,16,16,16};
|
|
const uint32x4_p zero = {0, 0, 0, 0};
|
|
|
|
uint32x4_p cy = vec_addc(vec1, vec2);
|
|
cy = vec_perm(cy, zero, cmask);
|
|
return vec_add(vec_add(vec1, vec2), cy);
|
|
#endif
|
|
}
|
|
|
|
/// \brief Shift a vector left
|
|
/// \tparam C shift byte count
|
|
/// \tparam T vector type
|
|
/// \param vec the vector
|
|
/// \returns vector
|
|
/// \details VecShiftLeftOctet() returns a new vector after shifting the
|
|
/// concatenation of the zero vector and the source vector by the specified
|
|
/// number of bytes. The return vector is the same type as vec.
|
|
/// \details On big endian machines VecShiftLeftOctet() is <tt>vec_sld(a, z,
|
|
/// c)</tt>. On little endian machines VecShiftLeftOctet() is translated to
|
|
/// <tt>vec_sld(z, a, 16-c)</tt>. You should always call the function as
|
|
/// if on a big endian machine as shown below.
|
|
/// <pre>
|
|
/// uint8x16_p x = VecLoad(ptr);
|
|
/// uint8x16_p y = VecShiftLeftOctet<12>(x);
|
|
/// </pre>
|
|
/// \sa <A HREF="https://stackoverflow.com/q/46341923/608639">Is vec_sld
|
|
/// endian sensitive?</A> on Stack Overflow
|
|
/// \since Crypto++ 6.0
|
|
template <unsigned int C, class T>
|
|
inline T VecShiftLeftOctet(const T vec)
|
|
{
|
|
const T zero = {0};
|
|
if (C >= 16)
|
|
{
|
|
// Out of range
|
|
return zero;
|
|
}
|
|
else if (C == 0)
|
|
{
|
|
// Noop
|
|
return vec;
|
|
}
|
|
else
|
|
{
|
|
#if (CRYPTOPP_BIG_ENDIAN)
|
|
enum { R=C&0xf };
|
|
return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)zero, R);
|
|
#else
|
|
enum { R=(16-C)&0xf }; // Linux xlC 13.1 workaround in Debug builds
|
|
return (T)vec_sld((uint8x16_p)zero, (uint8x16_p)vec, R);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/// \brief Shift a vector right
|
|
/// \tparam C shift byte count
|
|
/// \tparam T vector type
|
|
/// \param vec the vector
|
|
/// \returns vector
|
|
/// \details VecShiftRightOctet() returns a new vector after shifting the
|
|
/// concatenation of the zero vector and the source vector by the specified
|
|
/// number of bytes. The return vector is the same type as vec.
|
|
/// \details On big endian machines VecShiftRightOctet() is <tt>vec_sld(a, z,
|
|
/// c)</tt>. On little endian machines VecShiftRightOctet() is translated to
|
|
/// <tt>vec_sld(z, a, 16-c)</tt>. You should always call the function as
|
|
/// if on a big endian machine as shown below.
|
|
/// <pre>
|
|
/// uint8x16_p x = VecLoad(ptr);
|
|
/// uint8x16_p y = VecShiftRightOctet<12>(y);
|
|
/// </pre>
|
|
/// \sa <A HREF="https://stackoverflow.com/q/46341923/608639">Is vec_sld
|
|
/// endian sensitive?</A> on Stack Overflow
|
|
/// \since Crypto++ 6.0
|
|
template <unsigned int C, class T>
|
|
inline T VecShiftRightOctet(const T vec)
|
|
{
|
|
const T zero = {0};
|
|
if (C >= 16)
|
|
{
|
|
// Out of range
|
|
return zero;
|
|
}
|
|
else if (C == 0)
|
|
{
|
|
// Noop
|
|
return vec;
|
|
}
|
|
else
|
|
{
|
|
#if (CRYPTOPP_BIG_ENDIAN)
|
|
enum { R=(16-C)&0xf }; // Linux xlC 13.1 workaround in Debug builds
|
|
return (T)vec_sld((uint8x16_p)zero, (uint8x16_p)vec, R);
|
|
#else
|
|
enum { R=C&0xf };
|
|
return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)zero, R);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/// \brief Rotate a vector left
|
|
/// \tparam C shift byte count
|
|
/// \tparam T vector type
|
|
/// \param vec the vector
|
|
/// \returns vector
|
|
/// \details VecRotateLeftOctet() returns a new vector after rotating the
|
|
/// concatenation of the source vector with itself by the specified
|
|
/// number of bytes. The return vector is the same type as vec.
|
|
/// \sa <A HREF="https://stackoverflow.com/q/46341923/608639">Is vec_sld
|
|
/// endian sensitive?</A> on Stack Overflow
|
|
/// \since Crypto++ 6.0
|
|
template <unsigned int C, class T>
|
|
inline T VecRotateLeftOctet(const T vec)
|
|
{
|
|
#if (CRYPTOPP_BIG_ENDIAN)
|
|
enum { R = C&0xf };
|
|
return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)vec, R);
|
|
#else
|
|
enum { R=(16-C)&0xf }; // Linux xlC 13.1 workaround in Debug builds
|
|
return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)vec, R);
|
|
#endif
|
|
}
|
|
|
|
/// \brief Rotate a vector right
|
|
/// \tparam C shift byte count
|
|
/// \tparam T vector type
|
|
/// \param vec the vector
|
|
/// \returns vector
|
|
/// \details VecRotateRightOctet() returns a new vector after rotating the
|
|
/// concatenation of the source vector with itself by the specified
|
|
/// number of bytes. The return vector is the same type as vec.
|
|
/// \sa <A HREF="https://stackoverflow.com/q/46341923/608639">Is vec_sld
|
|
/// endian sensitive?</A> on Stack Overflow
|
|
/// \since Crypto++ 6.0
|
|
template <unsigned int C, class T>
|
|
inline T VecRotateRightOctet(const T vec)
|
|
{
|
|
#if (CRYPTOPP_BIG_ENDIAN)
|
|
enum { R=(16-C)&0xf }; // Linux xlC 13.1 workaround in Debug builds
|
|
return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)vec, R);
|
|
#else
|
|
enum { R = C&0xf };
|
|
return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)vec, R);
|
|
#endif
|
|
}
|
|
|
|
/// \brief Rotate a vector left
|
|
/// \tparam C shift bit count
|
|
/// \param vec the vector
|
|
/// \returns vector
|
|
/// \details VecRotateLeft rotates each element in a packed vector by bit count.
|
|
template<unsigned int C>
|
|
inline uint32x4_p VecRotateLeft(const uint32x4_p vec)
|
|
{
|
|
const uint32x4_p m = {C, C, C, C};
|
|
return vec_rl(vec, m);
|
|
}
|
|
|
|
/// \brief Rotate a vector right
|
|
/// \tparam C shift bit count
|
|
/// \param vec the vector
|
|
/// \returns vector
|
|
/// \details VecRotateRight rotates each element in a packed vector by bit count.
|
|
template<unsigned int C>
|
|
inline uint32x4_p VecRotateRight(const uint32x4_p vec)
|
|
{
|
|
const uint32x4_p m = {32-C, 32-C, 32-C, 32-C};
|
|
return vec_rl(vec, m);
|
|
}
|
|
|
|
/// \brief Exchange high and low double words
|
|
/// \tparam T vector type
|
|
/// \param vec the vector
|
|
/// \returns vector
|
|
/// \since Crypto++ 7.0
|
|
template <class T>
|
|
inline T VecSwapWords(const T vec)
|
|
{
|
|
return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)vec, 8);
|
|
}
|
|
|
|
/// \brief Extract a dword from a vector
|
|
/// \tparam T vector type
|
|
/// \param val the vector
|
|
/// \returns vector created from low dword
|
|
/// \details VecGetLow() extracts the low dword from a vector. The low dword
|
|
/// is composed of the least significant bits and occupies bytes 8 through 15
|
|
/// when viewed as a big endian array. The return vector is the same type as
|
|
/// the original vector and padded with 0's in the most significant bit positions.
|
|
template <class T>
|
|
inline T VecGetLow(const T val)
|
|
{
|
|
//const T zero = {0};
|
|
//const uint8x16_p mask = {16,16,16,16, 16,16,16,16, 8,9,10,11, 12,13,14,15 };
|
|
//return (T)vec_perm(zero, val, mask);
|
|
return VecShiftRightOctet<8>(VecShiftLeftOctet<8>(val));
|
|
}
|
|
|
|
/// \brief Extract a dword from a vector
|
|
/// \tparam T vector type
|
|
/// \param val the vector
|
|
/// \returns vector created from high dword
|
|
/// \details VecGetHigh() extracts the high dword from a vector. The high dword
|
|
/// is composed of the most significant bits and occupies bytes 0 through 7
|
|
/// when viewed as a big endian array. The return vector is the same type as
|
|
/// the original vector and padded with 0's in the most significant bit positions.
|
|
template <class T>
|
|
inline T VecGetHigh(const T val)
|
|
{
|
|
//const T zero = {0};
|
|
//const uint8x16_p mask = {16,16,16,16, 16,16,16,16, 0,1,2,3, 4,5,6,7 };
|
|
//return (T)vec_perm(zero, val, mask);
|
|
return VecShiftRightOctet<8>(val);
|
|
}
|
|
|
|
/// \brief Compare two vectors
|
|
/// \tparam T1 vector type
|
|
/// \tparam T2 vector type
|
|
/// \param vec1 the first vector
|
|
/// \param vec2 the second vector
|
|
/// \returns true if vec1 equals vec2, false otherwise
|
|
template <class T1, class T2>
|
|
inline bool VecEqual(const T1 vec1, const T2 vec2)
|
|
{
|
|
return 1 == vec_all_eq((uint32x4_p)vec1, (uint32x4_p)vec2);
|
|
}
|
|
|
|
/// \brief Compare two vectors
|
|
/// \tparam T1 vector type
|
|
/// \tparam T2 vector type
|
|
/// \param vec1 the first vector
|
|
/// \param vec2 the second vector
|
|
/// \returns true if vec1 does not equal vec2, false otherwise
|
|
template <class T1, class T2>
|
|
inline bool VecNotEqual(const T1 vec1, const T2 vec2)
|
|
{
|
|
return 0 == vec_all_eq((uint32x4_p)vec1, (uint32x4_p)vec2);
|
|
}
|
|
|
|
//////////////////////// Power8 Crypto ////////////////////////
|
|
|
|
#if defined(__CRYPTO__) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
|
|
|
|
/// \brief One round of AES encryption
|
|
/// \tparam T1 vector type
|
|
/// \tparam T2 vector type
|
|
/// \param state the state vector
|
|
/// \param key the subkey vector
|
|
/// \details VecEncrypt performs one round of AES encryption of state
|
|
/// using subkey key. The return vector is the same type as vec1.
|
|
/// \details VecEncrypt is available on POWER8 and above.
|
|
/// \since Crypto++ 6.0
|
|
template <class T1, class T2>
|
|
inline T1 VecEncrypt(const T1 state, const T2 key)
|
|
{
|
|
#if defined(__ibmxl__) || (defined(_AIX) && defined(__xlC__))
|
|
return (T1)__vcipher((uint8x16_p)state, (uint8x16_p)key);
|
|
#elif defined(__clang__)
|
|
return (T1)__builtin_altivec_crypto_vcipher((uint64x2_p)state, (uint64x2_p)key);
|
|
#elif defined(__GNUC__)
|
|
return (T1)__builtin_crypto_vcipher((uint64x2_p)state, (uint64x2_p)key);
|
|
#else
|
|
CRYPTOPP_ASSERT(0);
|
|
#endif
|
|
}
|
|
|
|
/// \brief Final round of AES encryption
|
|
/// \tparam T1 vector type
|
|
/// \tparam T2 vector type
|
|
/// \param state the state vector
|
|
/// \param key the subkey vector
|
|
/// \details VecEncryptLast performs the final round of AES encryption
|
|
/// of state using subkey key. The return vector is the same type as vec1.
|
|
/// \details VecEncryptLast is available on POWER8 and above.
|
|
/// \since Crypto++ 6.0
|
|
template <class T1, class T2>
|
|
inline T1 VecEncryptLast(const T1 state, const T2 key)
|
|
{
|
|
#if defined(__ibmxl__) || (defined(_AIX) && defined(__xlC__))
|
|
return (T1)__vcipherlast((uint8x16_p)state, (uint8x16_p)key);
|
|
#elif defined(__clang__)
|
|
return (T1)__builtin_altivec_crypto_vcipherlast((uint64x2_p)state, (uint64x2_p)key);
|
|
#elif defined(__GNUC__)
|
|
return (T1)__builtin_crypto_vcipherlast((uint64x2_p)state, (uint64x2_p)key);
|
|
#else
|
|
CRYPTOPP_ASSERT(0);
|
|
#endif
|
|
}
|
|
|
|
/// \brief One round of AES decryption
|
|
/// \tparam T1 vector type
|
|
/// \tparam T2 vector type
|
|
/// \param state the state vector
|
|
/// \param key the subkey vector
|
|
/// \details VecDecrypt performs one round of AES decryption of state
|
|
/// using subkey key. The return vector is the same type as vec1.
|
|
/// \details VecDecrypt is available on POWER8 and above.
|
|
/// \since Crypto++ 6.0
|
|
template <class T1, class T2>
|
|
inline T1 VecDecrypt(const T1 state, const T2 key)
|
|
{
|
|
#if defined(__ibmxl__) || (defined(_AIX) && defined(__xlC__))
|
|
return (T1)__vncipher((uint8x16_p)state, (uint8x16_p)key);
|
|
#elif defined(__clang__)
|
|
return (T1)__builtin_altivec_crypto_vncipher((uint64x2_p)state, (uint64x2_p)key);
|
|
#elif defined(__GNUC__)
|
|
return (T1)__builtin_crypto_vncipher((uint64x2_p)state, (uint64x2_p)key);
|
|
#else
|
|
CRYPTOPP_ASSERT(0);
|
|
#endif
|
|
}
|
|
|
|
/// \brief Final round of AES decryption
|
|
/// \tparam T1 vector type
|
|
/// \tparam T2 vector type
|
|
/// \param state the state vector
|
|
/// \param key the subkey vector
|
|
/// \details VecDecryptLast performs the final round of AES decryption
|
|
/// of state using subkey key. The return vector is the same type as vec1.
|
|
/// \details VecDecryptLast is available on POWER8 and above.
|
|
/// \since Crypto++ 6.0
|
|
template <class T1, class T2>
|
|
inline T1 VecDecryptLast(const T1 state, const T2 key)
|
|
{
|
|
#if defined(__ibmxl__) || (defined(_AIX) && defined(__xlC__))
|
|
return (T1)__vncipherlast((uint8x16_p)state, (uint8x16_p)key);
|
|
#elif defined(__clang__)
|
|
return (T1)__builtin_altivec_crypto_vncipherlast((uint64x2_p)state, (uint64x2_p)key);
|
|
#elif defined(__GNUC__)
|
|
return (T1)__builtin_crypto_vncipherlast((uint64x2_p)state, (uint64x2_p)key);
|
|
#else
|
|
CRYPTOPP_ASSERT(0);
|
|
#endif
|
|
}
|
|
|
|
/// \brief SHA256 Sigma functions
|
|
/// \tparam func function
|
|
/// \tparam subfunc sub-function
|
|
/// \tparam T vector type
|
|
/// \param vec the block to transform
|
|
/// \details VecSHA256 selects sigma0, sigma1, Sigma0, Sigma1 based on
|
|
/// func and subfunc. The return vector is the same type as vec.
|
|
/// \details VecSHA256 is available on POWER8 and above.
|
|
/// \since Crypto++ 6.0
|
|
template <int func, int subfunc, class T>
|
|
inline T VecSHA256(const T vec)
|
|
{
|
|
#if defined(__ibmxl__) || (defined(_AIX) && defined(__xlC__))
|
|
return (T)__vshasigmaw((uint32x4_p)vec, func, subfunc);
|
|
#elif defined(__clang__)
|
|
return (T)__builtin_altivec_crypto_vshasigmaw((uint32x4_p)vec, func, subfunc);
|
|
#elif defined(__GNUC__)
|
|
return (T)__builtin_crypto_vshasigmaw((uint32x4_p)vec, func, subfunc);
|
|
#else
|
|
CRYPTOPP_ASSERT(0);
|
|
#endif
|
|
}
|
|
|
|
/// \brief SHA512 Sigma functions
|
|
/// \tparam func function
|
|
/// \tparam subfunc sub-function
|
|
/// \tparam T vector type
|
|
/// \param vec the block to transform
|
|
/// \details VecSHA512 selects sigma0, sigma1, Sigma0, Sigma1 based on
|
|
/// func and subfunc. The return vector is the same type as vec.
|
|
/// \details VecSHA512 is available on POWER8 and above.
|
|
/// \since Crypto++ 6.0
|
|
template <int func, int subfunc, class T>
|
|
inline T VecSHA512(const T vec)
|
|
{
|
|
#if defined(__ibmxl__) || (defined(_AIX) && defined(__xlC__))
|
|
return (T)__vshasigmad((uint64x2_p)vec, func, subfunc);
|
|
#elif defined(__clang__)
|
|
return (T)__builtin_altivec_crypto_vshasigmad((uint64x2_p)vec, func, subfunc);
|
|
#elif defined(__GNUC__)
|
|
return (T)__builtin_crypto_vshasigmad((uint64x2_p)vec, func, subfunc);
|
|
#else
|
|
CRYPTOPP_ASSERT(0);
|
|
#endif
|
|
}
|
|
|
|
#endif // __CRYPTO__
|
|
|
|
#endif // _ALTIVEC_
|
|
|
|
NAMESPACE_END
|
|
|
|
#if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE
|
|
# pragma GCC diagnostic pop
|
|
#endif
|
|
|
|
#endif // CRYPTOPP_PPC_CRYPTO_H
|